Tribler-G: A Decentralized Social Network
for Playing Chess Online

Egbert Bouman

%
TUDelft

Delft University of Technology

Tribler-G: A Decentralized Social Network
for Playing Chess Online

Master’s Thesis in Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Cotap&cience
Delft University of Technology

Egbert Bouman

19th February 2012

Author
Egbert Bouman

Title
Tribler-G: A Decentralized Social Network for Playing Ché3nline

MSc presentation
1st March 2012

Graduation Committee
prof.dr.ir. D. H. J. Epema (chair) Delft University of Teakilagy

dr.ir. A. losup Delft University of Technology
dr.ir. A. R. Bidarra Delft University of Technology

Abstract

There are currently many systems that offer online boardegaror instance,
social networking sites, where board games enjoy enormopslgrity, but also
systems such as the Internet Chess Club, which has beendafmuaver a de-
cade. However, these systems are all centralized and typieve drawbacks for
the user, such as subscription fees or advertisements. Akeanative, we have
designed a decentralized protocol, called GameCast,nhates users to play turn-
based multi-player board games over a peer-to-peer network

The GameCast protocol supports three processes, dissemimd peer and
game information within the network, game agreement, whilbbws one peer
to invite another by sending invites, and game-play, whichbées peers to play
a game over the network. Our current GameCast implementatailed Tribler-
G, is built as an extension to the Tribler file-sharing amdlan, and focuses on
enabling users to play online chess through the Tribler-G.GU

To evaluate the performance of the GameCast protocol, we ¢tr@ated Game-
Test, a system capable of emulating a peer-to-peer netwising GameTest, we
have conducted a large-scale emulation of hundreds of padhe DAS-4 distribu-
ted supercomputer. The results acquired during the eronlatiow that GameCast
scales well and uses little bandwidth. Additionally, we d@erformed user tests,
the results of which show that users are generally positieiaTribler-G in terms
of usability.

Preface

The document before you is my Master of Science thesis, grdgents my final
work as an MSc student. The presented research was perfatrtieslParallel and
Distributed Systems group of the Faculty of EEMCS of Delftivénsity of Tech-
nology. This thesis describes my research on the creatiale€entralized system
that allows users to play turn-based board games over a@@eer network.

There are a number of people that | would like to thank forrteepport and help in
making this thesis. First, | would like to thank Alexandrislp and Dick Epema
for giving me invaluable help and advice during my work. | Wwbalso like to
thank my parents for their support, both morally and findhcigrurthermore, |
would like to thank the members of the graduation committedadking the time
to read this document and for providing many helpful suggest | would further
like to thank Boudewijn Schoon and the other members of tii@eFteam for their
comments and suggestions. And finally, | would like to thamk volunteers who
participated in the user testing.

Egbert Bouman

Delft, The Netherlands
19th February 2012

Vi

Contents

[Prefacé v
[1__Introduction 1
[L1 Online gaming systems 2
[1.2_Online social network systems 3
1.3 Peerto-peernetwolks o oo 4
[1.4 Epidemic protocdlS v v v 5
butions e e 6
L 7
R T °
K e 10
2.1.1 Centralized gaming systéms 10
.12 Decentralized gaming systéms 10
m_ym% 11
221 BuddyCast e, 11
222 InternetChessSenlers 12
13 Design and implementation of GameCaist 17
[3.1 Functional requirementso 18

M%&mﬂhts 20
3.3 The GameCast Drotobol 21

[3.3.2 Information dissemination 21
Mﬁmm 26
3.34 Game-play 28
3.4 The Tribler-G graphical user interface 32
|4 Evaluation of GameCast 37
41 TheDASM 37
[4.2 Emulation environment 38
St ... 38
422 Inputscenamio oo 39
4.2.3 Peerbehavidur 41

Vii

|5 2.1 Ouestionnaire 58
i S e e e e e e 61
l6__Conclusionh 65
|6 1 Summary and conclusions oe e 65
66

6.2 Future work

viii

Chapter 1

Introduction

Despite the availability of many modern online games whish complex 3D gra-
phics, traditional board games are still quite popular\édemced by their popula-
rity on online social network systems. Think, for instanoegames available on
Facebook such as Chess, Checkers and Go. Further stresgjtnethe enormous
popularity of board games on smart phones and tablet deviégekely that board
games will continue to flourish for the foreseeable future.

Currently, users who wish to play board games online haverieu of options.
For instance, they can choose to use social networking sities as Facebook, or
websites that offer similar services, such as Yahoo! GanAeklitionally, there
are also several services in existence that focus on oniewartgame, such as the
Internet Chess Club (ICC), the Free Internet Chess Sen@B)-and the KGS Go
Server. However, what most of these services have in commtrai they need
to generate revenue, which typically means users have torerativertisements
or pay subscription fees. Furthermore, the centralizelitmcture used by these
systems introduces a single point of failure, high gameihgstosts, and poor
scalability characteristics.

To provide users with a more attractive alternative to theeru systems, we
have created a decentralized system that allows users yotya-based board
games over a peer-to-peer network. The protocol that gebminteractions bet-
ween peers in our decentralized gaming system is called Gaste In order for
the system to function properly, we need GameCast to addex&sal problems.
First, we need an overlay network which we can use for theilligion of peer and
game information. GameCast realizes this through the uaa epidemic mecha-
nism, similar to the one used by the Tribler peer-to-peershiaring application
[33], which was also developed in Delft. Secondly, with thertay network in
place, we need a mechanism that allows people to contactatheh and agree
to play a game. And finally, once a game agreement is reachedequire me-
chanisms to allow for the actual game-play. The current é@mgntation of our
decentralized gaming system, called Tribler-G, is builaasextension of Tribler,
and focuses on enabling users to play online chess.

Worldwide Social Gaming
Revenue Forecast

2010 201 2012 2013 2014 2015

$6,000

($, Millions)

©2011 Parks Associates

Figure 1.1: Predicted social games market growth [14].

In this chapter we provide an introduction to online gamipstems, social net-
work systems and peer-to-peer networks; it is organizedlémafs. Sectior 1]1
gives an introduction to online gaming systems, and goesdetail about several
aspects of current systems. Section$ 1.2Zadd 1.3 discuss sokial network sys-
tems and peer-to-peer networks, followed by Sedtioh 1.4Rvliscusses epidemic
protocols. Sectiof 115 states the contributions of thisitheFinally, Section 116
provides an overview of the remaining chapters.

1.1 Online gaming systems

In this section we will discuss several aspects of onlineiggmystems, begin-
ning with the groups of games that are currently populariadgames, massively
multi-player online games or MMOGs, and casual games. ,Kosial games are
games that integrate with social networking sites (seei@€dt2) in a way that
enhances the game-play. The people who play these gamesram@lly not hard-
core gamers, and the games themselves are usually myleérpdad turn based.
The social gaming industry has undergone, and will contitouendergo, explo-
sive growth (see Figurle1.1). For example, Facebook, onbeofargest online
social networks, is currently the biggest player in the @ogaming market, and
66% of its traffic is related to social gamés|[30]. Second, MBA&Care games that
are capable of supporting a large number of players. Exaniptdude World of
Warcraft, Call of Duty Modern Warfare 3, and Lord of the Rin@gline. Finally,
casual games are games that have (almost) no learning aurdvesaally have a
sort duration. Examples of services that offer such gamesde Pogo, Cafe,
Doof and Kongregate. It should be pointed out that thesepgrofigames are not
separate, and games can belong to multiple groups.

The way online gaming systems can be accessed varies. Son&s gan on
online social networking systems, while others run on raguleb-sites. Games

2

that offer more complex graphics typically require theafiation of a stand-alone
application.

Most of the online gaming systems run on a traditional clgsrtver architecture,
which has significant drawbacks. First, centralized systertroduce high costs,
especially if companies need to over-provision a large ramalb servers in order
to cope with a sudden increase in the number of users. Sersyiohg on a cen-
tralized architecture introduces a single point of failufiehis means that due to,
for instance, a DDoS attack or because of a hardware issisystem could face
significant downtime. Finally, the scalability of centraistems is limited by the
capacity of a single server or cluster of servers. The cirgcharchitecture has
also various advantages, such as less software complexdtynare control over
the system since it relies on a central authority.

Since most online gaming system are run by companies, they aftempt to
generate revenue, which is often done by showing advertisemwhile the sys-
tem is being used, or by direct payment. Direct payment isllsachieved by
requiring that the user pays for the application that is usealccess the system,
by requiring a periodically subscription free, or by sailivirtual goods within the
game. Finally, there are several systems that do not atteng#nerate revenue,
but still require donations to pay maintenance and hostirsfsc

1.2 Online social network systems

Especially in the last several years, the Internet has becmopular place to
interact with one another. There are many different wayshiiciwpeople can col-
laborate, maintain social relationships, and share canédirsupported by online
social network systems.

Before continuing further, let us provide definitions foruamber of entities rela-
ted to this subject. First, a social network represents aohap links between the
people as they interact and create relationships, whereaslise social network
refers to a social network that is formed in an online settiSgcond, online so-
cial network systems are systems that support and manaige aokial networks.
A type of online social network system that is particularffea mentioned in the
media are social networking sites, which are defined as ‘aded services that
allow individuals to (1) construct a public or semi-publiofile within a bounded
system, (2) articulate a list of other users with whom thegrela connection, and
(3) view and traverse their list of connections and thoseenmdothers within the
system” [20].

Social networking sites currently enjoy tremendous pajiylaThink, for ins-
tance, of Facebook and Linkedin. But other popular onlingasystems also
exist. For instance, Youtube (a video sharing service), ioklr (photo sharing
service). Currently in-use systems exist mostly on cemtrdlarchitectures, and
while there do exist decentralized systems such as DiagdhréloseRub [[11],
GNU Social [7], they have yet to again a reasonably sized base. For more

3

technical details regarding social networks, please refesur literature survey
[19]

Since we will be constructing an overlay network based ontiegquent gamers
play games against each other, the resulting network caorisédered a social net-
work, according to the definition above. Unlike in many of éxésting systems, in
our social network system, the creation of relationshipessdot happen explicitly,
but implicitly by picking opponents against who you wish tayp

1.3 Peer-to-peer networks

Peer-to-peer networks are self-organizing networks stingi of interconnected
nodes which participate in the sharing of resources. Repe¢r networks have
no notion of clients and servers, and in their purest forra,rtatwork only exists

of equal nodes. However, equality of nodes is not a requintfoe peer-to-peer

systems, and there also exist hybrid forms in which the nétwommonly has two

types of nodes (namely, regular and 'super’ nodes). Sineetpepeer networks
have no servers that manage the operations within the netwodes are requi-
red to independently perform tasks such as searching, rimgnegnnections with

other nodes, and message forwarding. Additionally, in otdenaintain the ove-

rall performance of the peer-to-peer network, nodes anginexdjto adapt to failures
that can arise in network connections with other nodes dreahbdes themselves.
This behaviour leads to a highly dynamic network topologt th always changing
as nodes enter/leave the network and connections are didrafgped. One of the
most widely used peer-to-peer networks today is the Bigrurfile-sharing plat-

form [23]. In fact, BitTorrent is so popular, that it is respible for a considerable
portion of all internet traffic (see Figure 1.2).

Peer-to-peer networks often create an overlay network protdhe physical
network topology. Overlay networks, which decide the neknarganization and
location and routing algorithms, can be classified into tategories: structured
and unstructured networks. When dealing with structurest-pepeer networks,
nodes have a fixed limit on the number of other nodes that theyakowed to
connect to. Furthermore, in structured networks there w@ess that nodes are re-
quired to follow when deciding to which nodes they shouldremt. Examples of
structured peer-to-peer networks are Chaord [35], Ovei24}, [and Tribler [33].
In unstructured peer-to-peer networks, nodes have no firetddn the number of
connections that they establish to other nodes, nor do r@lesrules that regulate
to which nodes connections can be made. Example of unsteacheer-to-peer
networks include Gnutella [8] and Freenet|[22].

Tribler is a file-sharing application based on the BitTotrprotocol, and de-
veloped at the Delft University of Technology. Tribler aiets to improve the
BitTorrent protocol with features that were not availaligially, while remaining
backwards compatible with the original protocol. Most ofgh features tend to
make the network more social. An example of such a featureilidef's recom-

4

voip Usenet Gaming Other / unclassified
VPN
eDonkey__;go_ 10%_ 09% _05% 5.2%

BitTorrent
17.9%

Video streaming
26.5%

Figure 1.2: Estimate of overall internet usage for 2009.[27]

mendation system, which presents users with files he/shewaat/to download.

Another example is the remote search feature, which enaisiers to search for
files through querying remote peers. However, most of theggdvements re-
quire peers to be able to contact each other, even if they tesiole in a common
swarm. The original BitTorrent protocol does not allow thls order to enable

peers to contact each other, even if they do not reside in anmonmswarm (i.e, a
group of peers sharing a file or group of files), Tribler introds the notion of the
overlay swarm. The overlay swarm is basically a virtual saathich encompasses
all peers that are using the Tribler software. Tribler cargs the overlay swarm
through the use of an epidemic protocol, called BuddyCast Gectio 2.211).
When constructing an overlay network for our own system, tilee& a mecha-

nism based on BuddyCast.

1.4 Epidemic protocols

In epidemic protocols, or gossip protocols, informatiospsead within a computer
network much like disease or infection spreads within a faifmn, hence the name
epidemic protocols. Using the terminology from epidemisggrtain node in the
network can either be: infected, if it has an update (i.ec¢@iof information) and is
willing to spread it; susceptible, if has yet to receive daierupdate; and removed
if it has a certain update, but is not willing to share it. Egidc protocols are
simple, scalable, easy to deploy, and are very reliable deating with of a lot of
link failures.

Various propagation models exist, such as that of antepgtra model origi-
nally proposed for replicated database maintenance. |mtkieentropy model,

5

an infected node randomly chooses another node and exchapdates. The ex-
change of updates can take place in a number of ways. In a pusbaeh, the
infected node sends its own updates. When using a pull agiprdae infected
node receives updates. And the final approach, push-p@alc@nbination of the
former two (i.e., both nodes send updates to each othefelariti-entropy model,
nodes never become removed.

Information dissemination in our work, which is based on 8ydast, is achie-
ved using a model very similar to the anti-entropy model vtish-pull update
exchanges. However, since we are dealing with a peer-torateork, a network
in which lack a complete list of all nodes it is comprised of wannot choose
a random node from the entire population. Therefore, we sh@node from a
sample of the population, where the sample is comprised rafam nodes and
nodes that are frequently played against (see also SécBdh).3

1.5 Contributions

To address the issues introduced by gaming systems withtialized architecture
(see Section_111), we design and implement a decentralizsens that allows
users to play turn-based board games over a peer-to-peesrketVe also design
and implement a separate overlay network in which gametsfitbguently play
against each other cluster, promoting the creation of conities of gamers. By
focusing on the social aspect of the overlay network’s stinec we enable game-
play in a way that is similar to the games played on social ogting sites. We
implement our decentralized system as an extension to thiefpeer-to-peer file-
sharing application. As an added benefit, we hope that thesefumctionalities
could further expand the user-base of Tribler. In this thes provide answers to
the following research questions:

1. How to design and implement a protocol that enables platimn-based
board games over a peer-to-peer network?

2. How does the protocol that we design for playing turn-daseard games
perform?

In order to provide answers to these questions, we face tlmving technical
challenges (challenges 1-3 are related to the first resemestion, whereas chal-
lenges 4-5 are related to the second research question):

How to create a suitable overlay network on the physiqabltmy?
How to provide users with the ability to agree on playingaeng?
How to provide users with the ability to play a game?

How to emulate a large network of game playing peers?

How to assess the performance of a network of game playgacsp

arwONE

1.6 Thesis layout

The remainder of this document exists of five chapters andyasnized as follows.
Chaptei 2 discusses related work in the area of online gaamdgalso gives an
overview of existing mechanisms that could help to solvegoblem. Chaptérl3
defines the functional and non-functional requirementsritfiér-G, along with its

design and implementation. Next, Chajiter 4 provides aruatiah of the Game-
Cast protocol through several experiments. Chdgter 5 gesvihe results of the
user testing. Finally, in ChaptEl 6, conclusions are drawmfprevious chapters
and future work is discussed.

Chapter 2

Background

In a traditional online gaming system, clients in the nekvgend the game infor-
mation to a single server (or cluster of servers). It is nétadilt to imagine that

using such a client/server architecture, the server wihavally become a bottle-
neck as the number of clients grows. Despite this potentiatern, many, if not
all, of the truly popular online gaming systems today relaarentralized architec-
ture. These systems serve millions of users each day, andle@yer-provisioning

in order to guarantee that the system remains working pkoen if the number
of users suddenly increases.

Decentralized solutions are believed to offer better $dlithg while keeping
game hosting costs down. Unfortunately, it is also consiolgrmore challenging.
An example of a challenge that we face is the constructiomafverlay network,
which we can utilize to achieve large-scale distributiopeér and game informa-
tion. Tribler, a peer-to-peer file-sharing client based v BitTorrent protocol,
already has such a overlay network in place. However, ttaslay is structured in
a way that users with similar downloading tastes are momdito be connected
to each other than users with different tastes. For the gastveonk, it is unlikely
that this same structure is of use in disseminating gamet®vand therefore we
require a separate overlay network.

Additionally, we require a protocol that allows players twite another, play
games and discuss games. Internet Chess Servers (ICSs}kinsgla text-based
protocol that already suits most of our needs. While thigqua is really only
meant to be used for playing chess, its syntax can easily juostad to work on a
variety of other games as well.

The remainder of this chapter is organized as follows. 8e@il provides an
overview of various existing centralized and decentrdliaaline gaming systems,
while Sectiori Z.P introduces existing mechanisms that vee ursour work.

9

2.1 Related work

In this section we will discuss current online gaming systeRirst, we will elabo-
rate on various popular centralized systems. Second, wbnefly discuss several
decentralized gaming systems and explain how they diften four work.

2.1.1 Centralized gaming systems

Currently popular gaming systems are mostly using cengmraless. For example,
World of Warcraft [18], on of the most popular Massively Miptayer Online
Game (MMOG) today has more than 10 million subscribers [Anpther example
is Call of Duty Modern Warfare 3 [1], a First-Person ShookR$) which has been
reported to have around 20 million unique online playerheaonth [13].

However, games do not necessarily need to have complex 3ihigsain order
to attract a large audience. Think, for instance, of Fareyvd social networking
game that has almost 30 million daily usersi[21]. But alsoartcaditional board
and card games such as Chess, Checkers and Poker, haveaatialhster-base on
websites such as Facebook and Yahoo! Games. Additionailly,tle enormous
popularity of smart phones and tablet device, Android/i@&gs such as Word-
feud [15] (a word game based on Scrabble) have enjoyed tidwasrpopularity.

Additionally, besides the relatively recent servicesréhare also several central
gaming systems that have been around for more than a dedaidé, fbr instance,
of the Internet Chess Club (ICQ)[9], the Free Internet Clgzswer (FICS)[[5] and
the KGS Go Server [10].

What most of these central systems have in common is thattheg to gene-
rate revenue, which typically means users have to endureriighments or pay
subscription fees. Furthermore, the central servicesdnte a single point of
failure, large game hosting costs and generally do not seealle

2.1.2 Decentralized gaming systems

Most of the current research into peer-to-peer gaming sysfecusses on provi-
ding players with a virtual world, in which the player can re@round and inter-
act with his/her environment. Examples include games sadbamnybrook|[156],
a first-person shooter, and OpenTTD][31], an open sourcepteimentation of
the Real Time Strategy (RTS) game Transport Tycoon Deluxantr@ry to these
systems, Tribler-G aims to provide games that are much nianiéas to those of
social networking sites in terms of complexity. Additiolyalwe focus on struc-
turing the overlay network such that gamers that frequepitly together cluster,
thereby implicitly creating virtual communities of gamers

Our work provides online gaming services over the Triblex-§haring network.
Building a gaming system on top of a file-sharing network ismaw, and various
other systems exist that utilize file-sharing networks tivjate gaming capabilities.
Think, for example, of PastryMMOG _[26], which uses PAST, atabuted file

10

system on top of Pastry, and P2P Second Life [37], a MMOG thhuild on top
of the Kad network. However, Tribler-G is, to the best of onpwledge, the first
system that provides gaming functionalities over the Erilnletwork.

In GameCast, the peer-to-peer protocol that Tribler-Gzetil, the creator/owner
of a game is responsible for administrative tasks such afyimot all players that
the game has started, distributing game information andregrgsthat comments
are posted. To some extent, this is comparable to systemgighwne or more
peers are given the task of managing a certain region of thealivorld. Examples
of such systems are PastryMMOG and MOPAR [38].

2.2 Building blocks

In this section we provide an overview of existing mechasigirat we used as
building blocks while creating our decentralized onlinenjiag system.

2.2.1 BuddyCast

In the introductory chapter of this thesis we already briefigntioned that Tri-
bler introduces the notion of an overlay swarm in order tdonpeers to contact
each other, even if they do not reside in a common swarm. Tadaywswarm is
basically a virtual swarm which encompasses all peers tleatusing the Tribler
software. The most notable property of the overlay swarrhas is does not use
a central tracker, unlike traditional swarms. The overlagrsn is secured through
the use public-key cryptography, in which each peer is gav@ublic/private key-
pair. Peers on the overlay swarm are identified using thdiligkey, which Tribler
calls a PermID (or Permanent IDentifier). Each PermID mapssiagle IP address
and port number. When peers on the overlay swarm contactataehthey need
to exchange and validate their PermlIDs, after which comoatitin can start.
While peers download files from other peers, they build upedigpence list. A
preference list contains all files that a peer has downlo&udite past. Utilizing
the overlay swarm, peers exchange these lists. The colteofiall lists that are
gathered by a certain peer is called the preference cachegiger. Using the
preference cache, a peer is able to calculate its simil&ityther peers. Peers
with high similarity are called taste buddies. Beside ergirag preference lists,

10 Taste buddies:

Preference list permid, ip, port,
lastseen,

preference list

10 Random peers:
permid, ip, port,
lastseen

Figure 2.1: The BuddyCast message format.

11

peers also exchange lists of taste buddies and random peersder to distribute
the peer information throughout the network. BuddyCastreefo the algorithm
that manages the exchange of preference and peerilists rs spread their
preference and peer list by sending BuddyCast message§-igae[2.1) either
periodically, or in response to a received BuddyCast mes3atipen a peer decides
to send a BuddyCast message, it needs to select a targeTpedype of the target
peer alternates between a taste buddy and a random peeeaBom ffor alternating
between these types of peers is to enable the discovery of {hedt are even more
similar. Once a BuddyCast message has been send to a taegethat specific
peer will not be send another message for a predefined pdrivden Also, once a
peer receives a BuddyCast message from another peer, igmalie all subsequent
messages until a predefined period of time has passed.

When a peer first joins the network, it needs an initial lispeérs in order to
start participating in the exchange of BuddyCast messdges problem is solved
using a number of special super-peers which provide thessacg information to
newly arrived peers. These super-peers can be seen as hhbs thve network,
keeping the network connected and providing a low netwaakngiter.

Several of the features of Tribler rely on maintaining catioms between taste
buddies. For instance, the recommendation feature usetilarity between the
peers to recommend other downloads. Its easy to see whatdhdehind this is:
if peersa andb are taste buddies, thenmay also be interested in downloads of
b thata has not downloaded yet. Another feature that utilizes tagtklies is the
remote search, in which a peer may query the databases®btaddies in order to
find needed content.

In order to realize Tribler-G, we decided to create a sepavagrlay network,
which we call the game network. The game network is created) wsalgorithm
very similar to BuddyCast. However, we will not be distrilmgt preference lists,
but game information. Additionally, the network will not lséructured based on
similar downloading tastes of users, but based on how fratyuthey play games
against each other. Finally, we will use the structure obiwerlay network in order
to find suitable opponents

2.2.2 Internet Chess Servers

A popular way to play chess online is through the use of anieteChess Server
(ICS). Communication between an ICS and a player is achidwedigh the use
of a text-based telnet protocol. Because of this an ICS carobtacted using a
standard telnet client (see Listihg 2.1). However, moshefusers use some sort
of graphical interface to contact the ICS. Examples of papidterfaces are e.g.,
xboard/Winboard, PyChess and BabasChess.

The ICS protocol enables users to invite another and subségplay a game
of chess, and while this protocol is really only meant to beduer playing chess,
its syntax can easily be adjusted to work on a variety of ogjagnes as well. The-
refore, we use the ICS protocol as a basis for GameCast. Mamtadie of using

12

1800

1500 -

1200

900

600

Number of users logged in

300

80:00 06:00 lé:OO iS:OO 24:00

Time of day (Pacific Daylight Time)
Figure 2.2: Average number of users logged in on the Freenet&Chess Server
(FICS) during the day.

the ICS protocol syntax is that we can more easily involvel @& community in
our peer-to-peer gaming application. The ICSs have a sutistaser-base. For
example, the Free Internet Chess Server (FICS) has oved@Deggistered users
and at least 900 users are logged in at any time (see Higure 2.2

The telnet output shown in Listiig 2.1 is called "style 1” owsh ICSes. This
style is mostly used by users who play chess using a telrentcliThe current
default style is "style 12", which displays the entire gan&tes (the board, how
much time the players have left, etc.) in a single line of.teXhe reason for
this change of style is that the output from "style 12" is m@asier to parse by
a software application then the "style 1” output. Note thamging output style
merely ensures that the board is displayed differentlyryghimg else remains the
same.

Frequently used ICSes

By far the largest part of the community plays on only a hahdfiservers (some
of which date as for back as 1995). Among the most popular are:

FICS: Free Internet Chess Server (freechess.orglsers can register for a free
account on the FICS website, or login as guest. Game statistid ratings
are only for registered users. The description of the contimiased by FICS
can be found at; http://www.freechess.org/Help/AllFitml

ICC: Internet Chess Club (chessclub.com)The Internet Chess Club is a paid
service and users can't fully access it without becomingyangamember.
Information regarding the commands that ICC supports idable at: http://
www.chessclub.com/help/help-list

Chess.Net (chess.netChess.Net is another commercial service, and can be seen
as one of the main competitors of ICC. Information about lataéé com-
mands can be found at: http://www.chess.net/askowebidlitodex.htm

13

http://www.freechess.org/Help/AllFiles.html
http://www.chessclub.com/help/help-list
http://www.chessclub.com/help/help-list
http://www.chess.net/askoweb/tutorial/index.htm

Listing 2.1: Playing a game of chess on FICS using a telnentli

fics%seek 2 12

fics% Your seek has been posted with index 89.
(100 player(s) saw the seek.)

fics%

Mel egi n accepts your seek.

Creating: Melegin (993) GuestBWSK (++++) unrated blitz 2 12
{Game 521 (Melegin vs. GuestBWSK) Creating unrated blitz match.}

Ganme 521 (Mel egin vs. Quest BWSK)

1 | Rl N| B| K| Q] B| N| R| Mve # @ 1 (Wite)
|---+---+---+---+---+---+---+---|

2 | PP P]P|P|P|]P]P]
[e R R |

S e e e
[e R R |

4 | | | | | | | | | Bl ack Clock : 2:00
[e R R |

5 | | | | | | | | | White Cock : 2:00
[e R R |

6 | | | | | | | | | Bl ack Strength : 39
[e R Rt S SR

7 | *P| *P| *P| *P| *P| *P| *P| *P| White Strength : 39
[R e e e SRR S
|

*R*N *B| *K +Q +B| *N *R|

fics%

Basic ICS commands

The ICS protocol is not standardized. However, looking atdbmmands available
at the different ICSes, there appears to be (almost) noreifte. In case that
commands do differ, we follow the syntax described in theF-h&lp-files, since
FICS seems to be the largest free ICS. Below is a list of b&3& ¢ommands,
which can be used to find an opponent and play a game (for farsuine optional

parameters have been left out):

e seek time inc type colour start ratingating2
Using the seek command, users are able to post a request liesa game
of a specific type. The seek command takes a number of argamient
time means that each player initially gdéte minutes to play the game, and
each time they make a move they dime additional seconds. Thiype
parameter, which can be set to either rated’ or 'unratedhales whether
or not the result of the game should affect the ratings of laggps. The
colour argument can be set to either 'black’ or 'white’, denoting ttolour
with which the player executing the seek will play. The vatighe start
argument is set to either 'manual’ or 'auto’, where 'autoseres that the first
player that responds will be accepted automatically, arahumal’ allows the
player executing the seek to explicitly accept or declinesponding user.
Finally, ratingl-rating2 means that only players who have a rating within
this range are allowed to respond (e.g. 1200-1300).

e Mmatchuser type time inc colour

14

Using the match command, users can challenge a specifia pteggame of
chess. The match command has several parameters simiter $e¢k com-
mand, with the additional requirement that a user-name eistpecified
with theuserargument.

e play seekid/ user
The play command enables users to respond to a request psdtgdthe
seek or match command. The play command takes either a taguaber
(denoted withseekid, or a user-name (denoted witlsel) as an argument.

e accept / declineesponseid
When a user executes the seek command tyjikset to 'manual’, and one
or more players respond to it using the play command, thepacoenmand
allows the user to accept the response identifiecebgonseid The decline
command works the same, except that it will decline the nespo

e unseekseekid
The unseek command will cancel an outstanding request.der ¢o cancel
a specific request, unseek should be followed by a numbetifigieg the
seek geekid. If no argument is given, all requests are cancelled.

e MOVE
With this command, users can make moves when a game haglstatte
command exists out of a string in coordinate notation (e.2d4)l. Other
notations are also available, but coordinate notation seetie the simplest.

1: seek 10 5 rated black auto 1100-1400

2: Alice (1200) seeking 10 5 rated standard [white] ("play &0respond)

3: Your seek has been posted with index 50.
(102 player(s) saw the seek.)

4: play 50

5: Bob accepts your seek.

6 6 6: Creating: Bob (1300) Alice (1200) rated standard 10 5
{Game 85 (Bob vs. Alice) Creating rated standard match.
< 12> rnbgkbnr pppppppp —— ——— ——— ——— PPPPPPPP RNBQKBNR ...
! 7: d2d4
8 8 8: <12> rnbgkbnr pppppppp —— —— —P— ——— PPP-PPPP RNBQKBNR ...
9
9: d7d5
10 10)
10: <12> rnbgkbnr ppp-pppp —— —p—- —P—- —— PPP-PPPP RNBQKBNR ...
Alice ICS Bob
(rating 1200) (rating 1300)

Figure 2.3: Example of the message flow when Alice and Bob#@ggme of chess
on FICS (with style 12 enabled).

To illustrate the use of these commands, Fiduré 2.3 showsamme of how
communication between two players and an ICS could go. lrexaeple, Alice

15

executes the seek command on the ICS, the ICS notifies BobBaimdesponds
to the seek. The commands used in this example will work orSFa@d ICC

(and possibly others). The output from the ICS to the playar differ slightly

depending on which server you are using. For example, thendemessage in
Figure[2.8 can have arguments in different order on ICC, &@ &lso mentions
the rating range from the initial seek command.

16

Chapter 3

Design and implementation of
GameCast

In the previous chapter we discussed the ICS protocol, ebsed protocol used
for interacting with ICS servers, and the BuddyCast prdtacpeer-to-peer gossi-
ping protocol. In this chapter we introduce GameCast, seayshat incorporates
ideas from both protocols in order to achieve multi-playaming functionalities
over the Tribler peer-to-peer network. GameCast allowggrkato explicitly invite
one another or invite any player within a certain rating. Addally, besides the
functionalities required for playing a game, GameCast ssthat finished games
are distributed throughout the network. Players receitirggame will be able
to review the game and attach comments. For now, GameCdsinkjl support
turn-based board games, by which we mean that the playehne gbimes will have
a pre-determined order in which they make their moves and that number of
players and the frequency at which they move will be relftigenall (as opposed
to Massively Multi-player Online Role-Playing Games or MROGS). To realize
the GameCast system, we use a mechanism similar to Buddy&Caliow peer
discovery and game distribution within the network. Funthere, the mechanisms
used for game agreement and for playing a game are basedided#ibat for each
game, its creator/owner is responsible for administratig&s such as notifying all
players that the game has started, distributing game irgfttom and ensuring that
comments are posted.

The remainder of this chapter is organized as follows. 8ef3i1 defines the
functional requirements that need to be satisfied by Gante@aSectiorf 3.2, we
define a number of design requirements that need to be metio$Ec3 elabo-
rates on the design of GameCast. To some extent, SecfibniB.&@se go into
implementation details, explaining why particular desitptisions are made. Fi-
nally, Sectior_ 3.4 provides a brief introduction to the dnapl user interface of
Tribler-G.

17

3.1 Functional requirements

The Tribler peer-to-peer client will be extended with mylayer gaming functio-
nalities. Although, in the future, Tribler-G will have btiih support for a variety
of games, for the timing being, we will focus our efforts orina chess. The fea-
tures of the chess game should be on par with the main featfimgrent online
chess game§&|[2] [51[1.2]. The following basic functionaltishould be available:

Maintain a separate game network At this point we need to make a distinction
between the overlay network, that is comprised of all thesusETribler, and
the game network, which is defined as a subset of the overlayorie For
the time being, we will let users who are running the modifiéd|&r client
automatically join the game network, i.e., the game netvemdompasses all
the users who are running GameCast. Therefore, no funtitioisarequired
for joining or leaving the game network.

Create a new gameAny player can create a new game at any time. There are
two possible ways to create a new game: (i) invite a frieni),irfvite a
random player of a certain rating. In the case of inviting ec#jc friend,
this friend should be identified using his/her unique id@tor by selecting
a player from the high score list. Invites for players of agrtratings are to
be distributed within the game network within a distancé dfops. Online
peers within this distance will be able to view the invitegsext point).

Besides what (type of) user to play, the player creating #meycan also set
the color to play with as well as the different timing optiour chess game
will be using Fischer-after clocks, where the timing opti@ne the start time
for each of the players clocks and the time with which thelclofca player
is incremented when he/she makes a move.

Join a game The player has access to a list of outstanding invites (fronero
players) that he/she can respond to. This includes bothfepiewites from
friends and from players who request to play against a plafer certain
rating. If no open invites exists, the player should createva game.

Play a game against another useiOnce the chess game has two players, it will
start. If not enough players can be found to play the game disicarded.

Players are only allowed to enter valid chess moves into tbgram. Once
the move is entered, the program sends a message to the appotifying
him/her of the move. The opponent also checks the validithefmove to
prevent players from cheating.

Play a game against the computerEvents from games played against the com-
puter are completely localized (and are not distributedhis also means
that games played against the computer are not taken ingdawation in

18

the statistics, and the outcome of the game does not affectatings of
players.

For most games, there is some kind of open source Al softwaiahble,
which can play that particular game. These programs, aldedcangines,
can therefore be used to replace a player in the game. Exsroplepen-
source chess engines are Crafty [28], and GNU Chéss [6].

Distribute finished games Only once a game is finished, it will be distributed
throughout the game network. Peers receiving these garngkisgiore them
in their databases, along with games that they have playsdsives.

Review finished gamesUsers should be able to access the game information col-
lected during the distribution process. This informatindides at least: the
names of the players, the winner of the game, and the date @ ile
game was played. Furthermore, users should have the abiktgp through
all the moves of the chess game.

Users of the game network should also be able to attach tessages to
a game. Newly created messages will spread through the retising the
same protocol that spreads the games themselves. To Hffiit ticonstraints
need to be put in place on both the total number of messagesiates with
a game and the maximum size of the messages.

View statistics Users should have access to statistics related to all gdraesere
gathered during the distribution process. Each playerldhuave a rating,
indicating their level of skill with the game. Ratings arelie calculated
using information that is available in the database.

Furthermore, users should have access to a high score disirghthe ra-
tings of known players within the game network. To meet thiguirement,
information about previously discovered games (storetdéndatabase) is to
be used to extrapolate this list.

In order for ratings to be more meaningful to a player (i.e atihe ratings
of the other players are), the system should display songedfgdistribution
graph of all known players and their ratings.

Import games from FICS Since there does not yet exist a community of users
who frequently play chess on the Tribler network, it is esiyirpossible
that potential players find themselves unable to find a deitapponent on
the game network. To prevent these users from being disajggband lea-
ving the game network, our application should be able to itnadditional
outstanding invites from the Free Internet Chess Serv&{F[28]. Since
playing rated games on FICS requires players to be registesmbers, for
now Tribler will only support games that are not rated.

19

3.2 Non-functional requirements

In addition to the functional requirements from the pregisaction, a solution that
enables online gaming over the Tribler peer-to-peer ndtvgbiould also meet a
number of design requirements:

Flexible design The software should be designed in such a way that exteniaking t
range of possible turn-based board games will be easy. \playéng online
chess involves only two players, many other games, for el@mpnopoly,
can involve a different number of players. The solution $thde designed in
such a way that no (or at least minimal) changes are necetss@mplement
a game with more than two players.

Scalability Since the number of peers on the Tribler network has the paten
the grow very large, it is important that the online gaminguson scales
well. When talking about the scalability of the solution we anost concer-
ned with the bandwidth that the gaming functionalities useother words,
the amount of traffic that the online gaming solution usesighgrow only
moderately with the number of peers.

Responsivenes$laying social games over a network requires game evenis to b

propagated timely, which assures that the gaming experieas fluent
as possible. Of course delays are unavoidable since seadimgssage of
the network takes time, even under the best of circumstatagshermore,
users that utilize the gaming facilities of Tribler may alsve a number of
downloads running. Running these downloads and maintaitiia nume-
rous connections that are related to them, will further idgpthe responsi-
veness.

Furthermore, the responsiveness should also be scalabis.nfeans that
playing a game over a larger network and/or with a larger arhotipartici-
pants should have as little effect on the responsivenesssasote. However,
for the time being, we assume that the number of participaittbe limited.

Note that playing a simple game of chess, will not suffer taecmif the
responsiveness is lacking, since making a move will usuakg some time.
However, the design should consider that future games gmrdrate game
events more frequently.

Security Generally speaking, peers within peer-to-peer networlgdament cer-
tain protocols and use these protocols towards some comoan lg such
systems, however, untrustworthy peers could try to affeetdystem in a
way that is undesirable. For instance, a peer in the gameorietould de-
cide to start distributing fake game information in ordemftuence its own
rating or the rating of someone else. In this example, agiastlution is
to attach the signatures of all involved players to the ngessthereby pre-
venting anyone else from tampering with its content. Anotveaample of

20

undesired behaviour is the possibility of a peer to stasiching spam mes-
sages to a game (using the discussion feature), which calfme sort of
spam detection mechanism. Unfortunately, often, sectgyures cannot
be added later. However, we consider these problems to biglethe scope
of this research assignment, and focus more on deliveringrkimg proto-
col and the necessary features that enable to start buidirgnline gaming
community.

User friendliness The user interface needs to be intuitive—users should ke abl
to use the software without any help or training. When theesgsgives a
user an error, the generated error-messages should beaa<igossible.

3.3 The GameCast protocol

GamecCast enables its users to play online multi-player gdma decentralized
setting. This is achieved by exploiting a peer-to-peer nétwin which peers

manage their own local game information. To ensure that paeh has the most
recent information, GameCast peers periodically exchangssages containing
recent peer and game information. In addition, GameCastdqws a way for peers
to invite each other and subsequently play a game.

3.3.1 Design overview

GamecCast, named similar to BuddyCast and BarterCast, stersdi three pro-
cesses:

Information dissemination The information dissemination process spreads the
peer and game information throughout the network.

Game agreementThe game agreement mechanism enables one peer to invite
another by sending an invitation message.

Game-play The process of multiple peers actually playing a game adhesaet-
work.

In essence, the former process is a variation of the exi&irdgyCast protocol,
whereas the latter processes are new additions. Messdgkesit® GameCast are
passed through Triblers secure overlay, which enablesl|bigh communication
between peers. To easily differentiate between Triblemadstrd messages and
those of GameCast, GameCast messages are prefixed.l{gee Tablé 3]1). The
remainder of this section will further elaborate on eactheke three processes.

3.3.2 Information dissemination

GameCast uses a gossip protocol to disseminate the gaorexatfon across the
network. Analogous to BuddyCast, GameCast discovers pétris the network
and forms a overlay network. The resulting overlay netwarkijch we call the

21

Message type Primary function
GC_GOSSIP Used in the information dissemination process for
the exchange of peer and game information.

GC_ALIVE Used in the information dissemination process for
keeping connections with game buddies and random
peers alive.

GC_CMD Used for sending commands related to game agree-

ment and playing games.

Table 3.1: GameCast message types and their primary fasctio

game network, is formed in such a way that peers that freugtdy games

against each other tend to cluster. The reason for us to peosuzh a network
structure is based on the idea that users who frequentlyagjainst each other will
likely also be interested in each others games. The gameorietwddresses the
first technical challenge from Sectibn1l.5.

This network structure is achieved through the introdurctid so-calledgame
buddies Game buddies are basically peers that frequently play gaigainst each
other. In order to quantify this frequency, we define theretgon factor of peef
andj as:

Hlln(f”, C)/C>

where f;; denotes the number of games that pe@ndj have played against each
other, and: is a constant representing the maximum number of gameshbatds
be taken into consideration. Peers that have a high intenatactor are called
game buddies.

Information is spread within the network through the exgjeaonf cc_cossip
messages. When a peer decides to sead_a0ssiPmessage, it needs to select
a target peer. The type of the target peer alternates betawwgame buddy and a
random peer within game network. The reason for introducargiom peers is
to explore new peers (and games) in the network. When chpa@sgame buddy
target, the peer with the highest known interaction fact@hiosen, and when choo-
sing a random target, the peer is chosen at random. In eidsertbe target peer
is chosen such that it has not been send a message for atineaghtervalt. In
our current implementation we have $¢b 5 minutes, since such a short interval
allows for a timely information distribution with little alwidth usage (see also
section(4.3.8 for bandwidth usage). The peer receivingsthes0SSsIPmessage
will first check whether it has already receiveda Gossipmessage within time
intervalt. If this is not the case, the receiving peer will update itetdase with the
information found in the message, and subsequently send @ossiPmessage
back (unless it has already send a message within time attgrv

Looking at the contents of thec_cGossiPmessage as depicted in Figlrel 3.1,
we see that every message contains information related tawit identification.

22

Peer info:
ip, port, name,
connectable

50 Recent games:
gameid, ownerid,
winner_permid,
moves, players,
time_per.move,

10 Game buddies:
ip, interaction
factor, permid,

oversion,
connecttime

10 Random peers:
ip, interaction
factor, permid,

oversion,
connecttime

messages

Figure 3.1: The format of thec_cossiPmessages.

Furthermore, the message includes the 50 most recent gaengisiyer has created
and finished, which should be enough for most players to epasma one year
history (assuming players create and finish about 1 game R)wéénally, the
message contains 10 game buddies and 10 random peers, whigsponds to the
lists of connected game buddies and random peers furthewsdied below. Once
aGC_GossIiPmessage is received, the receiving peer updates its databeflect
the newly discovered information. Among other things, ttasabase provides the
necessary information used when determining game buddies.

Since a considerable portion of almost any peer-to-pe&rarktexists of uncon-
nectable peers (i.e., peers that can only be connectedhe fpeer itself initiates
the connection), we keep open connections with a number medauddies and
random peers, and use only those peers to include witkio_aossiPmessage.
This ensures that we only distribute peers that are cuyremtiine. Connections
are kept open by periodically sendingsa_ALIVE message. To keep track of all
these connections, each peer maintains several listsrmeitsory:

e Unverified connections list: The secure overlay of Tribléovas for proto-
cols such as GameCast to listen to incoming connectionsshahitially are
all added to the unverified connections list. However, byigiethe secure
overlay does not make the distinction between connectiomsng from e.g.
BuddyCast-only peers and peers that have GameCast runmimgrefore,
connections in this list are not necessarily GameCast p&aears are allo-
wed to stay in this list for up to 5 minutes before they are enatically re-
moved. This list is essential in preventing non-GameCastgpftom being
distributed within the game network.

e Connections list: Once a peer that is in the unverified caimmes list has
sent a GameCast message, we know for sure that GameCasteasl inth-
ning on the peer in question. To reflect this information, gker is moved
from the unverified connections list to the connections Tiste connections
list is further divided into two sub-lists:

— Unconnectable peers list: A list of connected peers thatad@ocept
incoming connections. These peers are not distributedthimitist it
still required to keep connections to connectable peers.ali

— Connectable peers list: A list of connected peers that adaepming

23

connections. Currently this list can contain no more tharp&eérs,
and can be further divided into connected game buddies hndrie the
top-10 peers with the highest interaction factor, and cotaterandom
peers, which are the remaining peers. For the size limitseofists we
have used the same as those of the original BuddyCast ptosince
they have proven to be effective. Furthermore, while caking the
interaction factor at most = 100 peers are taken into consideration,
meaning that we consider peers that have played more thagatiés
together to be equally close friends. The peers from thetedre the
ones that are included in tleec_cossIPmessages.

In the current GameCast implementati®a_GossiPmessages are sent periodi-
cally every 10 seconds, which ensures that game and peemiation gets disco-
vered quickly after start up. After the peer has been onlimeofer an hour, this
is increased to 30 seconds, since at that point a most of figriation discovered
will already be known.

Bootstrapping

When a Tribler client is first installed, it does not yet hamératial list of GameCast-
peers to start sendingCc_Gossipmessages to. In order to provide new clients
with such a list, we first need to run a process called boqigsing. Bootstrapping
works through the use of special peers in the network, callgerpeers. Super-
peers (usually) do not participate in the network activiety, they do not take part
in the game agreement process or play games. The contaghatfon required

to connect to the superpeers is located in a dedicated fitagthacluded with a
Tribler installation. The process works as follows:

e A peer that needs bootstrapping reads the addresses ofgbpears from
the hard drive, and randomly picks one. The reason for the tpegin the
bootstrapping process can either be because the peer ioribes metwork
or because the peer has not enough contact information ticipate in the
network successfully.

e The peer sets up a connection (using the secure overlay) emdbs sa
GC_GOSssIPmessage to the superpeer. The contents of the message is the
same as with a normal message. However, the recent gamlelshfay be
left empty, because the superpeer has no need for them.

e The superpeer responds witlsa_GossiPpmessage of its own. The contents
of the message is the same as with a normal message, with ¢bptiex
that usually both the recent games’ and 'game buddies’ figlidoe empty,
because a superpeer does not actually play games on theketwo

24

Discussion feature

In Section 3.11 of this chapter we mentioned that we wantedsgeehave a game
discussion facility. To meet this requirement, we intragltitze discuss command,
the first in a range of GameCast commands shown in Table 3.2n\Wlpeer wants
to attach a discussion message to game, it sends a discussaoonio the owner
of the game. The owner of the game is defined as the peer traedrthe game
and send out the initial invites (see also Sedfion 8.3.3xt,Nlee owner will import
the received discuss command into its database and distiiibe newly received
information through the exchange of futuse_GossiPmessages.

Command Function

discuss When a peers wants to attach a discussion messageég i
sends a discuss to the owner of the game. The owner is respon-
sible for spreading this information through the exchangfio
ture GC_GOSsIPmessages.

seek Used for notifying peers of a random invite.

match Used for notifying a particular peer of a personalt@wi

play Sent by a peer wanting to accept a random invite.

accept Sent as positive response to either a play or a matesimand.
decline Sent as negative response to either a play or a matcmand.
unseek Used for notifying peers that a random invite has blemsed.
start Receipt of this command tells a player that the gamd&béaisn.
abort Used to offer the opponent to abort by agreement.

draw Used to offer the opponent a draw by agreement.

resign Used to resign the game. The opponent is declareditimery
move Used by players in order to notify each other of their @sov

Table 3.2: The GameCast commands and their functions.

The GameCast commands shown in Tablé 3.2 are simple testtsrings, exis-
ting of the command itself, followed by a number of argumeifihle[3.3 lists the
command syntax, which is based on the ICS protocol. For theuds command,
the number of arguments is limited to two arguments ideimigffthe game and the
message itself and a third argument containing the contdritee message that is
to be attached to the game. When a peers sends a commandtergresr, it sends
aGc_cMD message with the command-string located in the 'commarnld’ diithe
message. The complete format of the.cMD messages is shown in Figlrel3.2. In
this figure, the owner field contains information of the owaerator of the related
game. The hops field tells receiving peers how many hops thlesage needs to
be forwarded. The signature field (created using the prikeyeof the sender) is
used for commands that need forwarding, and prevents usrpdss the message
along from tempering with the command.

25

Command Arguments

seek time, inc, type, colour, start, mirating, maxrating, gamename,
inviteid, gameid

match user, type, time, inc, colougamename, inviteid, gameid

play inviteid

accept inviteid

decline inviteid

unseek inviteid

start gameid, players

abort moveno, gameid

draw moveno, gameid

resign moveno, gameid

move moveno, gameid, time_taken

discuss gameid, messageid, content

Table 3.3: The GameCast command syntax (boldface inditad¢she command
or argument is not available in ICS and italics indicatesréatée name).

Owner info: Hops Signature Command
ip, port, permid

Figure 3.2: The format of thec_cMD messages.

3.3.3 Game agreement

For players to be able to play a game against each other, texy some way to
contact each other and agree to play a game. This is dongythtbe process of
game agreement, which addresses the second technicaingeafrom Sectiopn 11.5.

Each game has an owner associated with it, which identifeepelr that created
the game. The owner is responsible for finding the apprapnamber of oppo-
nents that are required for the game. For instance, sincena ghchess is played
by two players, the owner is obligated to create and sendroiie.i In order to
comply with the requirements defined in Secfiod 3.1, we difiéate between two
different kinds of invites:

Personal invites Invites that are meant for a specific peer in the network.
Random peer invites Invites that are meant for a peer that has a rating within a
certain range.

First, lets start with the process of sending a personaignvihere one peer (the
inviter) wants to invite a specific second peer (the invitiee)a game. First, the
inviter needs to ensure that there exists a connection eetthe two peers, and
create one if needed. Next, the inviter sends a match commdnich notifies the

26

4 1: establish connection
2: match command
3: accept/decline command

Figure 3.3: Example in which peersends a personal invite to péer

invitee of the invite. As mentioned in Tallle B.3, the matchhowand takes several
parameters, some of which also exist in the ICS protocol $estior 2.2.2 for an
explanation of ICS arguments). Regarding the ICS argumemis thing that is
worth pointing out is that thgypeargument should always be set to 'rated’, since
GamecCast does currently not support unrated games. Bebielé€S-supported
arguments, GameCast also requires a number of additiogain@nts needed to
identify the type of gamegamenamyg the game itselfdameid, and invite {nvi-
teid) in question. After the invitee receives the match commadndijll respond
with a accept/decline command, depending on whether ot ecides to accept
the invitation. An example of the process is depicted in FEE3.

Because the invitee can be off-line when the inviter triesatod the match com-
mand, but could come back online before the invitation hagred, we should have
some kind of mechanism that deals with the temporary urahiity of peers. The
solution is simple: when the invitee is off-line (meaningtthive cannot set-up a
secure overlay connection to it), the inviter will retry exy®& minutes, until either
the message has been successfully sent or a certain timeatoinkas expired (15
minutes, in the current GameCast implementation). Thisesar@thod is applied
to any command that is sent.

Second, we discuss the process of sending random peersinvitéially, we
thought about spreading random peer invites by appendieim to all outgoing
GC_GOssIPmessages. However, remember that when we previously distus
information dissemination, it was mentioned that sendimigsecutiveGC_GOSSIP
messages to the same peer should be at least 4 hours apagviatpeers from
sending the same message over and over again). Especiafijnétler networks,
this can cause periods of time in which are will not be any oimiggGC_GOSSIP
messages because everybody already received one reddnsiyvould mean that
the invite will not be distributed in a timely fashion.

To avoid such issues, a different mechanism has been crfeatszhding random
peer invites. Consider a situation where a peer wants tteiaviandom peer of a
certain rating for a game of chess. First, the inviter senslsek command to all
connected game buddies and random peers. The seek comncarmtksmany
of the same parameters as the match command that we prgvatisslissed (see
Table[3.B). Arguments that are worth mentioning are uber argument which

27

1: seek
2: play
3: accept
- 4: decline
5: unseek

Figure 3.4: Example of the commands sent when pemeates a random invite.
Peersz andg respond to the invite, and the response frpia accepted.

denotes the permlID of the invitee, and #tart argument which should always be
set to 'manual’. The peers receiving the seek command wildiod the message
to their connected game buddies and random peers. How nmaey the command
is forwarded depends on the hops field of the message, whitdtiemented each
time the message is forwarded. The forwarding process stbes the counter
runs out. The default start value is currertigps= 2, which ensures that several
hundred peers can be reached. Next, the peers that decideeat #he invitation
will respond to the invite by sending a play command back ¢dnkiter. When the
inviter receives the first play command, it accepts the éndind notifies the peer
by sending back an accept command. At this point the inviéetides all further
play commands related to the particular invite by sendirak lolecline commands.
Now that the invite is no longer valid, the peers in the nelwaeed to be notified
to avoid inconveniencing users with trying to respond tata@s/that are no longer
valid. To this end the inviter sends a unseek command in thhe sgay that the
seek command was send. In case that no peer responds toitheaviithiin a certain
time constraint (currently set to 15 minutes), the invitatis automatically marked
invalid. An example of the process is depicted in Fiduré 3.4.

3.3.4 Game-play

Once the game agreement process has been successfullyetesmphe owner
of the game will have collected a list of players that will baying the game.
Next, we need to address the third technical challenge freati@[1.5, which is
providing users with the ability to play a game. To this ehé, dwner first sends a
start command to all other players. The start command cortesaveomplete list
of players involved in the game, and only after a peer resdhis command will it
be aware against which players it will be playing. Each pldliet receives a start

28

command will now assume that the game has officially stameldaarks the time.

At this point, the players establish connections betweeh ether. We assume
that all players will be constantly online for the duratiohtloe game. Since the
game has started, it is time for the players to start makingesio At the start
of this chapter it was mentioned that GameCast supports ganyes that have a
predetermined order in which players make their moves. kamgle, in the case
that we are dealing with a game of chess, white will make ttst firove, black
the second, etc. This means that, since the colour of theddas already been
established during the game agreement process, each gayev independently
able to determine when it is time to make its own move.

When a player makes a move, it sends a move command to allthers of
the game. When a hew move command arrives, the receivingcheeks whether
processing the command should be postponed (see the sketam on message
ordering). Furthermore, the receiver also checks theitalid the move and if the
sender of the command is indeed next to move. Finally, theivecchecks whether
the clock of the sender has run out (see the section belowroe giocks). If this
is the case, the move command will be ignored and the recgtiops participating
in the game. If all verifications are successful the peer imsgthe received move
command into its database.

A game is finished once a closing move (i.e., a move after wiielgame will
be finished) has been detected. To this end, each player bagekige of the rules
of the game. Once a new move is received, it uses these rulesaionine whether
or not the game is finished. If this is indeed the case, it spgptcipating in the
game, notifies the user, and in case the receiving peer ishe@sawner, it will start
distributing the game using thec_cossiPmessages discussed previously.

As mentioned in Table_3.3, the first argument of the start camdris used to
identify the game that the command relates to. Furthernibessecond argument
contains a list of all players within the game. Turning odeiation to the parame-
ters of the move command, we notice that contrary to otherd&&zamt commands,
the syntax of the move does not start with the name of the cordntaut with the
move itself in a notation specific to the kind game that is peptayed (e.g., for
chess a move command could be 'd2d4 20 1'). The second enthe @ommand
contains a number used to identify the game, followed by tbeemumber (see
also the section below on message ordering).

Message ordering

So far, we have not been concerned about the order in whickages arrive. This
is due to the fact that the secure overlay of Tribler utiliZ€P connections, which
ensure that messages between each pair of peers arrivesartteeorder in which
they were send.

However, in these case that we are dealing with a game witle riam two
players, it is possible that move commands are received iffexaht order. In
order cope with this possibility, each move command has aemamber attached

29

to it (movenoin Table[3.8). This move number denotes how many moves have
already been made, including the current moveni@weno= 1 for the first move,
moveno= 2 for the second, etc.). Since itis also possible that a peeives a start
command out of order, we implicitly assign a move number todtart command
with a value of 0.

Now that, for each game, we have numbered the commands irhwecare
expecting to receive them, we can simply buffer unexpectedenmumbers until
the time that they are ready to be processed. The size offies lwill be limited to
the number of players within the game, since eventually #raeywill be blocked
by the peer that owns the buffer.

Regarding TCP connections of the secure overlay, we shdsidrete that in
the event that a connection gets dropped after a messagstjsaebefore it is
received by the target peer (depending on the network tetie message will
be lost. However, we assume that these events will be radefoarmow simply
make the message handling functions deal with them (e.@rreegould time-out
due to a lost move command).

Game clocks

Many competitive games such as chess, Go, and Scrabbleegdime clocks in
order to keep track of the total time that each player hamtakefar. Each player
has its own clock, and the clock of a player is only running whés his/her turn
to make a move. As soon as a move has been made, that clockewithised
and the clock of the opponent will resume. Several diffetgoes of games clocks
exists, for instance Fischer-after clocks, Fischer-lefdocks, hourglass clocks,
and simple delay clocks.

Like the Free Internet Chess Server (FICS), GameCast uselsdfiafter clocks
in order to keep track of time. Fischer-after clocks counwdrom a specified
number of minutes, and after each move a player makes a sgkaifiount of time
is added to his/her clock. Furthermore, like on FICS, the@alacks of each of
the players will not get incremented after the first move drddocks will only
start running after both players have made their first moves.

In GameCast, the Fischer-after clock takes two parametansely the start time
in minutes to which the clock of each player gets set, andithe in seconds with
which the clock of a player is incremented when a move is mage andinc in
Table[3.8). By recording the time at which the various movencands related
to a game were received, each peer independently keepsofréok game clocks.
Move commands received after the clock of a player has ruamuignored.

The difference between the time at which a player makes a anad¢éhe moment
the other player(s) receive a move (i.e., latency) can réasthe game clock not
being properly synchronized. To prevent this, the Gamegrasgbcol includes the
time taken for the move in question. Next, players receithggmove command
will calculate the difference between the time taken adogrdo the sender, and
compare it to the time taken from the receivers perspechiext, receiving peers

30

will correct the opponents clock with the value that was fesly calculated.
To limit malicious use, to maximum allowed correction is getl second. We
have added this mechanism after the first round of user te&e Chapter]5, in
particular Sectioh 5.21.2)

Special commands

Until now, we only discussed making normal moves, but thezeabso a number of
special game-play related commands: abort, draw, andrésag also Tablés 3.2
and[3.B). Using these commands player may choose to end the githout
making a closing move.

The resign command allows a player to resign the game, atéhwthe op-
ponent will be declared the winner. The resign command worlish like a regu-
lar move command, with the exception the a player does na tawait his/her
turn before executing the command. The draw command, haweegiires that all
players agree that the game is to be drawn. In order to reaabraement, Game-
Cast requires that all players send an draw command withaiimemoveno after
which the game is considered drawn. The abort command woskéke the draw
command, with the exception that if any player has yet to nagimgle move, the
game can be aborted by any of the players without reachingrement.

Game ratings

Currently GameCast supports the Glickol[25] rating systehich is a system for
rating players of a two-person game. The reason for adofitimglicko system is
partly due to that fact that the FICS uses the same systentharefore gamers that
also play on FICS will be more comfortable with understagdime rating system.

In the Glicko system, each player has a rating and a ratin@tiew (RD). The
RD of a player is used to quantify to which extend the ratinghef player should
be trusted. In case a player has a high RD, the player may netdmmpeted in
many games, while a low RD indicates that the player compgeggsently.

The rating of a player can only change as a result of a complgaene. How
much a rating changes depend on both the rating and RD of @yermitself, as
well as that of the opponent. The rating of a player with a HRih will change
more than a player with a low RD. Furthermore, over time, waetayer builds up
a more established rating (and thus a higher RD), additiemdlosses will have a
less substantial affect on his/her rating. Besides the RBeplayer itself, the RD
of the opponent is also taken into consideration, althooghsmaller extent: when
a opponent has a high RD, the change of the rating of the plaijiebe smaller
than it would be if the opponent had a low RD.

The RD of a player can change both as a result of a completed gachalso the
amount of time that passes when the player is not playing. geting in games
will always increase the RD of a player, while not competirily aways decrease
the RD of a player.

31

e .
Home. Channes GRS Getangs Libw:
Search Flies o Channen Eed oy E
Avnitabie pamses 1l Piayer statistics||) Onine Chess) Find Oppenerts | B vs Computer Disaiss Games
Thess
My statistics
ting 1 W Lot e Gomey
Black i o [1
white 1 2 (1} E]
Statistics of oiber ployers
The nighest ranking pleyars mehm yoor part of the retwork sre [double-ciok to e s
Rating > wins Oress Lomsss
1607 1
1551 1 2
1485 2 a
1378 o
To fmmery what ratings soe common, please vist the
|
|
| Sharreg Repusstion: Jvwage (7] 08 O 0B Us []

Figure 3.5: Screenshot of the Tribler-G main window whilewing GameCast
player statistics.

When calculating ratings using Glicko, a collection of gantleat were played
within a "rating period” are treated as if they have occursedultaneously. This
length of rating period can be set to anything, but we useirgraeriod of just one
minute. This is due to the fact that the FICS uses the same,vahd we would
like our rating system to be as close to theirs as possiblée that in order to know
which games have occurred in which rating period, we needhtovkthe time at
which games are played. Therefore, we included the age ofme géhen sending
GC_GOSsIPmessages.

There is currently one problem with our rating system thatasth mentioning.
The problem occurs when a player joins the game network &ofitst time, or has
been off-line for a long period of time. When this happens, gitayer in question
will lack recent game information, and may therefore notafull history of each
gamer (remember that our gossip algorithm only distribtbes50 most recent
games of a player). This leads to different ratings for denéayers.

3.4 The Tribler-G graphical user interface

In the previous section we elaborated on the GameCast ptotehich is essen-
tially the part of the program that works in the backgroundidiionally, we also
need a graphical user interface (GUI) that enables the aserspond to invites,
send invites, make game moves, etc. To meet this demand, weesktended the
current Tribler GUI with features required to control GamasC This section will

32

| Sesnch Fiies o Chunnel po Chanmess Gomes Setags Libeary E

Awniabis pames ol Ployes Statistics | 8 Onine Chess | 2 Find Oppanents | B vs Computer Disciss Games
Chess
Jokn 4 game

To juin a game, pleass scoept one of the fofowng chalanges by double didking):
_ limpan weatad challangas fiem FICS
Rt 1 play B Erart / inc time Expiras in =

i

!ﬂ:-:wﬁq&uu: Sowage (7] 0HDewn 0B U

Figure 3.6: Screenshot of Tribler-G while displaying aahié invites.

briefly discuss the GameCast GUI, and give an overview of ¢adufes it offers.
How users asses this GUI is discussed in Chapter 5.

Figure[3.b shows a screenshot of the extended Tribler GUH.tdp bar of the
screen allows users to go through the different panels mvithibler. This bar is
included in any standard Tribler installation, and the G@as# extension merely
adds an additionabamesbutton to the bar. When a user clicks @amesbut-
ton, the GameCast GUI is displayed, which encompasses tienbtwo panels
displayed in Figur€_3]5. The left panel presents an overgttine currently im-
plemented games (to date, the only game available is chHessYight panel allows
users to play the game that is selected in the left panel.

In the bottom right panel, there are the following tabs fohass gamePlayer
Statistics Online ChessFind Opponentsvs ComputerandDiscuss GamesThe
Player Statisticgab, selected in Figure_3.5, enables the user to accesstistati
related to past games. These statistics do not only shovatimey rof the current
user and how many games were won/lost, but also give a mobalgbicture of
ratings of other known users in the form of a histogram. Initaaid the user can
use theHighscoresbutton to switch between the histogram and a list of the 25 bes
players.

TheFind Opponentgab allows the user to create and accept invites. The list in
Figure[3.6 shows the invites that a user can respond to. Bautlefnvites in this
list are collected from GameCast only. However, by checkirey’import unrated
challenges from FICS” option, available invites from th&€Blare shown as well.
Note that currently only unrated invites are supported.sT$idue to the fact that

33

f] Ty 330 ;
VL0, e Bt
I some Setargs Lisear
| — 1 [] i E
Avnitsbis pame wil Player Statistics | O online Chess |) Find Oppereres. | B ws Computer Disoiss Games
Chess
Gasme Tnformation
dpporert o Grardmester
Tena 6 G:03:10) Du04:51
[play as whee
Status whee to move
ks 7
| Shareg Repuastion: Svwage (7] 08 Ceen 0B ie [-]

Figure 3.7: Screenshot of Tribler-G while playing an onigane of chess.

FICS requires users to be a registered member of FICS in turghaty rated games.
In the current implementation, however, users are autaaibtilogged in as guest.
New GameCast invites can be created by clicking the "Creatmagame” button
shown below the list of invites. Creating new FICS invitesigd supported at this
time.

Once an opponent has been found, the user should sele®ntime Chessab,
where he/she is presented with a list of all current activaasga The games in this
list can be resumed by double-clicking, at which point therw@srives at a screen
similar to Figure 3.J7.

Thevs Computetab allows the user to play a game against the computer using
the Crafty chess-engine. Games played against the comangtarot saved and
have no time limit. Furthermore, since our GameCast-edablibler client is
more geared towards online gameplay, options like settihgchwcolour to play
with and which level of difficulty the chess-engine shouldyplvith are also not
available.

Finally, theDiscuss Gametab allows users to discuss finished games. When
opening the tab, the user is presented with a list of all kngames (that have
been gathered during the information dissemination pg)ceSince the list can
grow rather large, there is also a search option which allivesuser to display
only games related to a particular player. Double-clickamgentry from the list
of games, allows access to the review panel, in which a usevisaally browse
through all the moves that have been made during the gaméhefonore, the user
is provided the opportunity to share comments/insightsaéng to the game, as

34

well as read messages from fellow players. Currently, thé ddlds not allow the
user to attach a message to another message (i.e., nebtihgych functionality
could be added relatively easily.

35

36

Chapter 4

Evaluation of GameCast

After having discussed the design and implementation of &zast in the pre-
vious chapter, in this chapter we will evaluate its perfange To this end we have
created GameTest, an emulation environment that allowge tetwork of Game-
Cast peers to be emulated by starting and stopping Triblestances. During the
emulation of the GameCast network, GameTest will gatherinétion related to
a number of important statistics.

Section 4.1l describes the hardware configuration of the BA8percomputer
on which we performed our emulation. We elaborate on the Gasteemulation
environment in Section 4.2. Next, in Sectlonl4.3, we emuatetwork of Game-
Cast peers and evaluate the performance of the system.

4.1 The DAS-4

The experimental results that are presented in this chaypges acquired using
the fourth generation Distributed ASCI Supercomputer orSPA[3]. DAS-4 is

a six-cluster distributed system, of which the clusterslacated at the following
institutes/organizations: VU University (74 nodes), laxidJniversity (16 nodes),
University of Amsterdam (16 nodes), Delft University of Teology (32 nodes),
the MultimediaN Consortium (36 nodes), and the Netherldndtute for Radio

Astronomy (23 nodes). Each cluster has one head node, waigked as a file-
server, and the remaining nodes are computation nodes.

The DAS-4 clusters communicate with each other through #eeafi dedicated
10 Gbps light-paths. Furthermore, each cluster has a 1 Ghpsection to the
Internet through its local university. Within each clustiwe nodes are connected
locally through 1 Gbps Ethernet for the normal nodes, and bpsGthernet for
the head node.

DAS-4 runs the CentOS Linux operating system. The nodesabf efthe clus-
ters have the following or better configuration: a dual quark 2.4 GHz processor,
24 GB memory, 1 TB of local storage, and 18 TB of storage madiadote by the
head node.

37

4.2 Emulation environment

In this section we present GameTest, a system used to erautatevork of game-
playing peers on the DAS-4 supercomputer, thereby addigetise fourth technical
challenge from Sectidn 1.5. The emulation is made possipleifining Tribler-G
instances on nodes of the DAS-4. In order to control what fgpbaing on the
emulated network, GameTest requires an input scenariaibiescwhich peers
join/leave the network. GameTest processes the input soemae line at a time,
and subsequently creates or stops Tribler-G instances. péans behave during
the time that they are online is decided based on uniformaiangrobabilities.

GameTest should be started using the Sun Grid Engine (SkdEgurrent node
reservation system for DAS-4. SGE enables the reservatiaspecific number of
nodes for the duration of a program run. While SGE comes Wiitihe@ necessary
commands needed to perform node reservation, GameTeshtymelies on Prun,
an alternative user interface for SGE. We decided in favdl®ran because it is
generally much easier to use.

Crowded [34] is an emulation environment very similar inhéiecture to Ga-
meTest. Crowded has been developed to evaluate a swarnvatigqrotocol on
DAS-2. Much like GameTest, the system works by starting @aagpéng Tribler
instances on nodes of the DAS-2. Crowded differentiatedf ifttorm GameTest by
the input data it requires and the statistics it collectsrduthe emulation.

Despite the design similarities between GameTest and Gdywale decided to
create GameTest from scratch, because we estimate thatéHapbetween the
two systems is only about 250 lines of code. Based on thimasdi we believe
that adapting Crowded to fit our needs would have taken as timehas creating
the system from scratch. Additionally, creating GameTe®nfscratch prevents
any issues that might have occurred because of unavailaldatdated software
dependencies.

4.2.1 Architecture of GameTest

Figure[4.1 shows the architecture of the GameTest emulatisitonment, which
consists out of a singlmanagerprocess and one or moveorker processes. The
manager reads an input scenario file from disk, and subs#guenvards the
commands listed in the input scenario to the appropriatdkevarsing XML-RPC
(XML Remote Procedure Calls). The workers take these comsand send them
to the targeted Tribler-G instance, which will execute thenmand. The workers
are able to communicate with the Tribler-G instances ondahgesnode using pipes.
When starting the system, one of the nodes is chosen as thermasle, which
runs both the manager and the worker, and the remaining ravdeslave nodes,
which only run the worker.

On which node a particular Tribler-G instance should runeisided by the ma-
nager process and is completely transparent to the usern tiibeGameTest ma-
nager process encounters a command to start a new peewaditrflsrthe command

38

Slave Node

Master Node

L1 GameTest Worker

GameTest Worker

01 03 06
13 50 11

Slave Node

GameTest Manag GameTest Worker

64 05 21

Input
Scenario

Slave Node

GameTest Worker

14 08

Figure 4.1: The architecture of the GameTest testing emmient used on the
DAS-4 nodes, with a number of Tribler-G instances running.

to the worker process that has the fewest Tribler-G ins&naening. The worker
process receiving the command will create a new Tribler€3aimce, and subse-
guently signal the manager that the instance has startezk tba manager process
has received this signal it will remember on which node thatigular instance
is running. This ensures that the load is distributed eguationgst the available
slave nodes.

4.2.2 Input scenario

Which peers join or leave the emulated network at what tindessribed in the in-

put scenario. The input scenario is stored as a text file witlnaber of commands

that will be executed (for wait commands) / forwarded (fdrestcommands) se-

quentially and in the order in which they are specified in thelfyy the GameTest

manager. Listing 411 shows an example of what an input sicecauld look like.
Currently, the following three input scenario commandseaaalable:

e shell ¢, p: This command is used to execute shell commarah the

slave node that holds Tribler-G instange We only use this command for
monitoring system statistics (e.g., CPU load monitoring).

39

e exec ¢, p: This command tells the Tribler-G instangéo execute the com-
mandc (see below for a list of available commands).

e Wai t s: Issuing the wait command will cause the GameTest manager to

pause execution of the input scenario for the durationssdconds.

The exec command explained above currently implementsolleving com-

mands:

e start ¢: This command will ensure that a new Tribler-G instance with

namep is started on one of the nodes. The name should be a uniqog, stri
since itis used in future commands to identify the instafide parameter
denotes the maximum number of simultaneous games that draésallo-
wed to participate in (see the next section). Once the cordrisagxecuted,
a working directory is created named after the instanceldngs to. The
working directory is used to store various state informatguch as settings
and database files. If a working directory already existssthte information
that it contains will be used to create the Tribler-G inst&anc

e starts: This command is the same as the previous command, with the ex

ception that the new Tribler-G instance will be started ipespeer mode (see
the previous chapter for more information on superpeersje Juperpeer
mode does not support playing games, and therefore this emchiacks
additional arguments.

e st op: Once an instance with nameis started using the start command,
it can be stopped at any time using the stop command. WherbkeifG
instance is stopped, the GameTest manager process wit tiaelparticular
slot (the hostname of the node and TCP port number) that tarice held.
In case of a future re-start of the same Tribler-G instanke, GameTest
manager will attempt to assign the instance the same sloit teld before.
However, there are no hard guarantees that the instanceedlive the same

slot.

exec starts peerl
exec start 2 peer2
wait 1

exec start 2 peer3
wait 1

exec pause peer2
exec start 1 peerd
vait 298

exec stop peer4
exec resune peer?2
wait 25

exec stop peer2
exec stop peer3
exec stop peerl

Listing 4.1: Example input scenario

40

4.2.3 Peer behaviour

The input scenario discussed in the previous section tefisemulation environ-
ment when and for how long a peer should be online, but it doegescribe how
a peer should behave during that time. Instead, the behasipeers is determined
by the peers themselves during runtime, based on randoralgtities. Currently,
the only behaviour related argument that can be passed terdaspdne maximum
number of games a peer is allowed to play simultaneouslytfgestart command
from the previous section).

Peer behaviour is modelled as follows. We assume that actom executed
in bursts. The actions within each burst consist of a waitogethat represents
the time that a user needs to take a certain action, followethd execution of
the command. Between bursts, there are larger wait peniegeesenting the user
leaving the application and doing some other work. In ordeawioid too many
games from timing out because of this longer wait period, emare played within
a single burst.

The code that governs the behaviour of a peer consists ofgéestontinuous
loop that does the following. First, it selects what typeaxfidt is to be executed.
Next, based on the type of task selected earlier, the coddeteon the time to
wait, and waits for the selected amount of time. Finally, peer decides on the
actual task and executes it (see Fidurée 4.2).

1: function EMULATEPEER

2 while Truedo

3 type < selectTaskTyp€)

4 time < selectTaskTimédtype)
5: sleeftime)

6 task <+ selectTasKtype)

7 task()

8 end while

9: end function

Figure 4.2: The function of defining peer behaviour.

The next obvious question is how do we select what type of taak should
be executed. This decision is made based on pre-determiobalplities. The
pseudo-code listed in Figure #.3 demonstrates how the pracgss works. In the
pseudo-code the variablé%,, G, and Iy represent the list of open games (i.e.,
unfinished games that the peer is currently involved ingatiogames (i.e., finished
games), and open invites (i.e., invites from other peerstligapeer is eligible to
respond to) respectively. These lists are not modified inited code, and are
maintained by code outside this function. The const@atsPy, Py, Pp, andPg
represent the probabilities that are used to decide on tkigtamk type. Note that,
depending on the values 6fp, G¢, andIp, we are mostly dealing with relative
probabilities. Furthermore?,,,... denotes the maximum number of simultaneous

41

1: function SELECTTASKTYPE

2 type < NOOpPS > the noops task acts as a short no-operation
3 if |G| > 0 andrandom() < Pp then

4: type < discuss

5: else if|Gp| = 0 andrandom() < Py then

6 type < noopb > the noopb task acts as a long no-operation
7 else if|Go| > 0 andrandom() < Py, then

8 type <— move

o else if|Go| < Gmae then

10: if |Io| > 0 andrandom() < Pp then

11: type < play/accept
12: else

13: if random() < Ps then
14: type < seek

15: else

16: type < match

17: end if

18: end if

19: end if

20: return type
21: end function

Figure 4.3: The function of selecting which type of task ib&executed next.

games that can be played by the peer in question (this vasig s/ the peer’s start
command listed in the input scenario). Tablel 4.1 shows iéswous functions
used in the pseudo-code listings. Also, line 11 mentionsasletype 'play/accept’,
which denotes a task that either responds to a seek with agrl&y a match with
an accept (see also the previous chapter). Finally, ndtatete code in Figufe 4.3
does not cover the entire range of all GameCast commands.isTtiiie to the fact
we reckon the resign, draw, and abort commands among pessibles. Also, the
decline command is missing, because this command can dymen be explicitly
sent using the Tribler-G user-interface.

After having determined the type of task that is to be exaLwte need to decide
on the actual task and the interval during which to wait pt@mexecution. As
shown in Figuré 412, theel ect TaskTi ne is used to determine the wait time.
Thesel ect TaskTi me works by returning a uniform randomly selected integer
in a range depending on the type of task that is to be execatad @nce we have
waited for the proper amount of time, we need to decide on ¢hehtask. In the
pseudo-code listed in Figure #.4, the task is determinedibglamly selecting an
invite/game from the listé/p, G, andio.

In the experiments presented in Section 4.3, we have usedathes for the
parameters listed in Table 4.2. The first two parametersdifdr each task type
represent the minimum and maximum time that we estimateafieghould take.

42

1: function SELECTTASK(type)
2 if type == movethen
3 game < randomChoice(Go)
4 move < decideNextMovdgame) > based on pre-defined games
5: task < createTasKtype, game, move)
6: else iftype == play/accepthen
7 invite < randomChoice(1p)
8 task <+ createTasWtype, invite)
9: else iftype == seekthen
10: invite < randomly generate an invite
11: task <+ createTasWtype, invite)
12: else iftype == matchthen
13: invite < randomly generate an invite
14: task < createTasKtype, invite)
15: else iftype == discusghen
16: game < randomChoice(G¢)
17: message < randomly generate a message
18: task < createTasKtype, message)
19: else iftype == noopthen
20: task < createTasKtype)
21: end if

22: return task
23: end function

Figure 4.4: The function for selecting the next task.

These values correspond to the intervals from whiclsteect TaskTi me func-
tion selects its return-values. For instance, we estinfatieattaching a discussion
command to a game should take betw@@,,;, = 60 andTp 4, = 180 se-
conds. This time denotes the time that it takes for a userl¢atsa specific game,
open up the review panel, type in a message, and press sanddddnalso applies
to the remaining tasks. Thoops andnoopb are different from the other tasks
in that they do not actually execute anything. Insteaabpb represents the time
between bursts, whileoops represent a short period of inactivity within a bursts.
Finally, unless otherwise specified, we haveGg},, = 1, meaning that emula-
ted peers can only play one game simultaneously (like on tee ternet Chess
Server).

Unfortunately, we lack actual data to base these valuesubmyédbelieve to have
chosen reasonable values, based on previous works in hcomaputer interaction
([29], [36]). The same problem arises when determining tlobdabilities for each
of the task types. Therefore, further research into thiblera is required.

43

Function Description

random() Return a uniform randomly selected floating poimhher
in the rangg0.0, 1.0).

randomChoicel) Return a uniform randomly element from the non-empty
list L.

validMoves(7) Return a lists of a valid chess games that can be made for
gameG.

createTask(...) Return a task based on the command #ypad any addi-
tional parameters.

Table 4.1: Functions used while determining peer behaviour

Task type Parameters

noops TO,min = 20 TO,max = 60

noopb TN min = 300 TN maz = 600 Py = 0.20
discuss Tp,min = 60 Tpmaz = 180 Pp = 0.01
move Trvimin= 1 TM,maz = 10 Py = 0.99
play/accept Tpmin = 5 Tpmaz = 30 Pp = 0.75
seek TS min = 20 TS maz = 60 Ps = 0.75
match TA min = 20 TAmaz = 60

Table 4.2: The parameters and the values used during thermmeapgs.

4.2.4 Logging features

In order to determine what is happening on the emulated mktloe GameTest
emulation environment produces a number of log files. Afteremulation ends,
these files are analysed by a post-processing script, whistides the results pre-
sented in Section 4.3.

There are currently two log files created for each Triblem&ance. First, the
GamecCast log, which is primarily used to log at what times &@ast command
messages are sent or received. The GameCast log is storfitkisalled 'game-
cast.log’, which can be found in the working directory of ffgbler-G instance.
Listing[4.2 shows an example of (part of) a GameCast log. Tsedolumn re-
presents the time in seconds since epoch (on Linux systeoth ép January 1st
1970 at 0:00). We choose this time representation becausk lite easier for the
post-processing script to process. The second column eemdiat type of event
we are dealing with. All possible types of events and thedcdption can be found
in Table[4.3. The third column shows the remote peer thavived in the event
(if any). And finally, the fourth column lists any values ttaat important for de-
bugging and analysis. Note that the final column has a péatiéarmat, namely
a variable name followed by an equality sign and a value, atichited by a se-
micolon. This format provides expressability and exteiligibbut makes parsing
more complex. However, we believe that the increase in egsest-processing is

44

worth the additional complexity.

Listing 4.2: Example GameCast log-file.

1315330672.47 DBTATS

1315330707.84 RECMSG Rfrx76KL0z (10.141.0.14:6000) msgpe = GAOMD (seek) ; payload
1315330707.86 SENMISG br6zkoxA7P (10.141.0.10:6002) msgpe
1315330707.86 SENMISG ZUSCsuPXtr (10.141.0.10:6000) msgpe
1315330707.87 RECMSG br6zkoxA7P (10.141.0.10:6002) ms$gpe = GAOMD (seek) ; payload
1315330707.87 REQMSG ZUSCsuPXtr (10.141.0.10:6000) m$gpe = GAOMD (seek) ; payload
1315330715.48 SENMISG Rfrx76KL0z (10.141.0.14:6000) msgpe = GAOMD (seek) ; payload

1315330715.49 DBTATS

1315330715.49 SENMISG br6zkoxA7P (10.141.0.10:6002) mségpe = GACMD (seek) ; payload
1315330715.50 SENBISG ZUSCsuPXtr (10.141.0.10:6000) msgpe = GAOMD (seek) ; payload
1315330732.84 RECQMSG br6zkoxA7P (10.141.0.10:6002) mségpe = GACMD (seek) ; payload ..
1315330732.85 SENMISG Rfrx76KL0z (10.141.0.14:6000) mdgpe = GACMD (seek) ; payload = ...

gc.members = 1 ; uptime =0 ; ...

GACOVD (seek) ; payload
GACVD (seek) ; payload

gc.members = 3 ; uptime = 43 ; ...

Event type Description

SEND.MSG Either a GameCast command or a GameCast gossip mes-
sage has been sent.

RECV_MSG Either a GameCast command or a GameCast gossip mes-
sage has been received.

POSTPONE A GameCast move command has been received, but is not
yet ready to be processed.

GAMEDONE! A GameCast game has just been marked as finished due to
an abort, resign, draw or closing move.

CLOCK_COR! An opponent’s clock has just been corrected by the speci-
fied amount of time.

DB_STATS Periodic executed event that lists several databasetisiatis

CONN.TRY? A connection is being established.

CONNLVER? A remote peer has been verified to be a GameCast peer.

CONNADD? A connection to a remote peer has just been opened.

CONNDEL? A connection to a remote peer has just been closed.

GC_STATE? Periodic executed event that lists several gossip staisti

Table 4.3: Possible event types shown by the GameCast éxy-fil

The second log file that GameCast produces is related to gs#jiog protocol,
and gives an overview of the peers that are connected and nvbssages are sent
or received. The GameCast gossip log is called 'gamecasjglog’, and can also
be found in the working directory. An example of a part of a @&ast gossip log
is shown in Listind 4.B.

*Only shown in the GameCast log.
20nly shown in the GameCast gossip log.

45

Listing 4.3: Example GameCast gossip log-file.

1315330685.43 GSTATE Round =2 ; nBr=1;nBs=1;nCc=1 ...
1315330685.44 CONFWRY Rfrx76KL0z (10.141.0.14:6000)

1315330685.49 CONADD Rfrx76KLOz (10.141.0.14:6000)

1315330685.50 SENMISG Rfrx76KLOz (10.141.0.14:6000) msgpe = GCGOSSIP (active) ; payload ...
1315330685.56 CONMER Rfrx76KL0Oz (10.141.0.14:6000)

1315330685.57 REQMSG Rfrx76KL0z (10.141.0.14:6000) msgpe = GCGOSSIP (active) ; payload ...
1315330695.43 GSTATE Round =3 ; nBr=2 ; nBs=2 ; nCc=0 ...
1315330700.83 CONADD br6zkoxA7P (10.141.0.10:6002)

1315330700.87 CONMER br6zkoxA7P (10.141.0.10:6002)

1315330700.87 RECMSG br6zkoxA7P (10.141.0.10:6002) ms$gpe = GCGOSSIP (passive) ; payload ...
1315330700.89 SENMISG br6zkoxA7P (10.141.0.10:6002) ms$gpe = GCGOSSIP (passive) ; payload ...

4.3 GameCast evaluation

Using the GameTest emulation environment discussed eavikehave performed
an experiment designed to evaluate the GameCast protoaghdthe experiment,
7,618 unique peers have connected to the emulated netwerkiowe, while the
maximum size of the network was 446 concurrent peers. Therg®pnt was
conducted using 20 DAS-4 nodes. Using less than 20 nodekeatsna higher
message transmission times, due to increased system load.

4.3.1 Performance metrics

In order to asses how GameCast performs (the fifth challemge Sectiori 15),
we monitor twelve metrics, which can be categorized asvi@lanformation dis-
semination metrics, game agreement metrics, game-plagcs)eand bandwidth
usage metrics.

Information dissemination metrics

Metrics 1A and 1B: The knowledge of peers about each peerr(@dme (B) that
was added to the network sinttee start of the emulation.

These two metrics quantify the performance of the infororatissemination pro-
cess in terms of spreading all past game/peer informatianobfain metric 1A,
for each online peer, we divide the number of gaming peeltsateaknown at a
particular time by the number of gaming peers that are intexée (both off-line
and online). To obtain metric 1B, for each online peer, wedgithe number of
games that are known at a particular time by the total numbgames in exis-
tence. Finally, the results from all peers are averaged.

Metrics 2A and 2B: The knowledge of peers about each peer (Aame (B)
that was added to the network sin@ening the system.

These metrics quantify the performance of the informatimsamination process
in terms of spreading recent game/peer information. Toioltetric 2A, for each
online peer, we divide the number of gaming peers in its degalthat are no older

46

than the peer itself by the number of gaming peers that watedatb the network
since the peer joined the network. To obtain metric 2B, faheanline peer, we
divide the number of finished games in its database that acédeo than the peer
itself by the total number of games that were finished sineg#er joined the net-
work. Finally, the results from all peers are averaged.

Metrics 3A and 3B: The number of peers that are aware, overtghmoe inter-
vals, of the finished games or active peers during each iakerv

We would like to know how fast game information is spread tigto the network.
To capture this characteristic, we will keep track of the bemof peers (off-line
and on-line) that are aware of a particular game over timdr{e@A). Additio-
nally, we will do the same for peer information, by keepirack of the number of
peers that are aware of a certain other peer (metric 3B).

Game agreement metrics

Metrics 4 and 5: The time it takes for a random peer invite teead throughout
the network and how many peers are covered.

We would like to know how long it takes for a random peer inditetravel the
distance of two hops, measured from the time of sending|, thettime of reaching
all nodes within 2 hops (metric 4). Furthermore, we woule lit know how many
peers the invite reaches (metric 5).

Game-play metrics

Metric 6: The time that it takes to set up a game.

This metric measures the time it takes to set up a game rgfdrtim the point that
the final invitee responds to a invite, until the point thapédyers of a game have
received a start command for the game.

Metric 7: The time that peers need to add to their clocks ireoii remain syn-
chronized.

This metric measures how much each peer needs to corredothe of its oppo-
nents. If a large number clock corrections reach the maxirooimrection parame-
ter, the game clocks will often not be properly synchronized

Bandwidth usage metrics

Metric 8: The bandwidth usage of GameCast without any garaatigities.

To obtain this metric, we measure the bandwidth used by thBefG instances
without taking the gaming activities into account. In ortieachieve this, we log
the bandwidth usage of the information dissemination peceparately.

Metric 9: The bandwidth usage of GameCast when peers arénglagames over
the network.

47

To obtain this metric, the bandwidth that peers use when dneynvolved in ga-
ming activities (e.g., sending invites, or making movesh&asured.

4.3.2 Scenario generation

In Section 4.2.2 we discussed the notion of the input scersard what types of
commands they can be built out of. However, until now we haveconcerned
ourselves with how exactly we can create an input scenarithi$ section we will
elaborate on how to deal with the issue of scenario generatio

In order to create an input scenario, we need to decide whéeh ig started at
what time and for how long it remains running. To solve thislgem, we have
chosen to base our approach on a basic queueing model, ih whés arrive in
the network one by one, according to a Poisson process. Biaearival times are
modelled with a Poisson process, the inter-arrival timdkfaliow an exponential
distribution, for which the cumulative distribution fuim (CDF) is:

F(zr)=1-¢e"2

Furthermore, we assume that the intervals during which ¢eegpare running, are
uniformly distributed and independent of the inter-arriaes.

An appropriate value foh in the CDF can be determined by applying Little’s
law. Using the same terminology as earlier, Little's lawesdhat, given an average
number of online peersY), the average running time for each pegr &nd an
average peer arrival rate\), the following relation holds when the system is in
equilibrium:

N = \t.

We have created a script capable of generating an input sodresed on user-
specified parameters such as the maximum nuréhgy,. of simultaneous games
peers aim to play, and the values of the variall¥esand¢. The script works by
running in a continuous loop that does the following. Fiitsgienerates a random
numberr in the rang€g0, 1]. Using the value of,, the next inter-arrival time: can
be calculated by applying the CDF mentioned earlier. Névet, Script generates a
wait command withe specified as its argument. Following that, a start command
is created for a new peer (selected from an infinite sourcellptipn). Once a
start command has been created for a certain peer, the gameith ensure that
that peer will remain running for a randomly selected nunmdfeyeconds within a
certain range. After a peer has stopped, it will not returth&osource population.

We should point out that starting and stopping peers arekisigacommands,
meaning that the execution of the input scenario will hatil tine commands have
been completed. If left unchecked, this will affect the \atitimes of all sub-
sequent peers, resulting in a lower arrival rate. In ordealleviate these effects,
the GameTest system will measure the time spent during teeudrn of these
blocking commands, and will attempt to correct subsequait gommands by
subtracting the time that was spent waiting for the blockinghmands to com-
plete.

48

While generating an input scenario for the emulation, weelsat the targeted
network size (V) to 400 peers. Additionally, the time that a peer will remain
running is uniform randomly chosen from the range betweearid40 minutes
(amounting to 25 minutes on average far

Figure[4.5 shows the number of online peers within our eradlaetwork as
a function of time. The experiment is performed in real-tiarel lasts 8 hours,
during which 7,618 unique non-recurring peers are part @ftwork, while the
maximum network size is 446 peers. Additionally, the peershe network play
a total of 7,736 games of chess. Two of the peers in the netam@lsuperpeers,
which remain online for the entire duration of the experitnefdditionally, the
first half hour of the experiment is the start-up time of theutation. While pre-
senting the results of the emulation in the next section, lessametimes exclude
this time period from our results, since the network is stithe process of starting.

450

400
350
300
250

Emulation

200 start-up

150

Number of online peers

100
50

0 I I I I I I I
0 1 2 3 4 5 6 7 8

Time since emulation start (h)

Figure 4.5: The size of the emulated network as a functiomué.t

4.3.3 Experimental results

In the previous section we introduced twelve metrics forluatng our system,
which we categorized as follows: information disseminatioetrics, game agree-
ment metrics, game-play metrics, and bandwidth usage e¢aethi the following
sections, we will discuss the performance of GameCastiimg@f metrics for each
of these categories separately.

49

Information dissemination

In order to asses how well the information disseminationcess performs, we
monitor six metrics while running our experiment. First, ta@/e monitored the
knowledge of online peers about all peers and games thatdemreadded to the
network since the start of the emulation (metrics 1A and IBe behaviour of
these metrics as a function of time is displayed in Fiduré 86th metrics are
much higher during the first half hour of the experiment beeathen there are
only a few peers leaving the network (recall that peers reroaline for about half
an hour on average), ensuring that the average fractiorskistpg. However, af-
ter the first half hour, more and more peers start to leave eéheark, leading to a
near exponential decay. Note that metric 1B is much lowen thatric 1A since
only the owner of a game is involved in its distribution, wéas peer information
is distributed by all peers that are connected to it. At theé eihour experiment,
the fraction of known gaming peers has reached 0.04, whaldrétttion of known
peers has reached 0.01, meaning that every peers knowsragavés of all peers
(both off-line and online), and 1% of all games. If we conéduthe experiment,
both metrics would have continued to decrease, becauseess lpave the net-
work, the distribution of their peer and game informatiosoastops. Additionally,
new games are continuously being created, leading to ancmatidecrease in the
metrics. The results of metrics 1A and 1B tell us that infaiorafrom inactive
peers quickly disappears from the network, which preveetypfrom receiving
irrelevant information.

0.6 ‘ ‘ ‘ ‘ ;
Knowledge of peers (metric 1A}——
Knowledge of games (metric 1B)--------
0.5 4
0.4]
c
8
g 03¢} 1
LL
0.2+ i
04 fl T —]
; s ST, |
ol ‘ ‘ T s — e
0 1 2 3 4 5 6 7 8

Time since emulation start (h)

Figure 4.6: The knowledge of peers about the peers and génaiesére added to
the network since the start of the emulation as a functiomud.t

50

0.7 T

Knowledge of peers (metric 2A)—
06 Knowledge of games (metric 2B)--------

0.5 W [y)/ \ Ty | Y. ity

WW“" | i v \ ’ w JW \MWA* i W/ "

0.4 1' 1
|

0.3

Fraction

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.1 b/

0 1 2 3 4 5 6 7 8
Time since emulation start (h)

Figure 4.7: The knowledge of peers about the peers and géaewére added to
the network since joining the system as a function of time.

Figure[4.T7 shows the knowledge of peers about peers and dhatdsave been
added to the network since joining the system (metrics 2A28)d The fractions of
knowledge that peers posses are remarkably stable: orgaygreers know about
50% of all peers that have connected to network since theggbihe system, and
almost 10% of all games that finished since they joined thiesys

In order to gain insight into the number of peers that are awécertain infor-
mation after its insertion into the network, we have momitbthe number of peers
that are aware, over short time intervals, of the finishedasaan active peers du-
ring each interval (metrics 3A and 3B). The results, dispthin Figurd_ 4.8, show

600 T

...peer information (met'ric 3A——
...game information (metric 3B)--------

500 — B

400 | 1

300 R

200 R

Number of peers aware of ...

100 | R

0 15 30 45 60
Time since peer/game creation (min)

Figure 4.8: The number of peers that are aware of a certairopaeertain finished
game since its insertion into the network as a function otithe.

51

that on average, 5 minutes after a peer arrives in the netwwosd 100 peers are
aware the existence of the newly arrived peer. It is becaluggsdbehaviour, users
will be able to invite other players within the network jusbments after starting
Tribler-G. For games, the behaviour is similar, but less\ptmced due to that fact
that games are only distributed by their owners. Nonetbel@®und 10 minutes
after a game has finished and starts to be distributed, 5@ peeraware of the
game in question. This is more then we initially expectedeieach peer will only
periodically send the games it owns to a maximum of 10 comidegame buddies
and 10 connected random peers (see Settion] 3.3.2). Hoveaveg, many peers
join/leave the network over time, the connected game bsdaliel random peers
also change frequently, leading to a much larger numbererfspbat are aware of
a certain game. Since peers are only online for a relativelglisperiod of time
(ranging from 10 to 40 minutes), the number of peers thativeagertain infor-
mation quickly stops increasing. Note that since gamesraaed after a peer is
already online for some time, it will be distributed for a dlmaperiod of time,
leading to game information converging much faster.

Game agreement

When peers in the network wish to play a game against each tileg must first
agree on the parameters of the game. Inviting a specific peéneonetwork is
achieved by sending messages in a point-to-point fashinfiting a random peer,
however, is achieved by spreading a message within a destafrtevo hops. How
fast this message is spread and how many peers are reachag important for
finding a suitable opponent.

Figure 4.9 (left) shows the distribution times of the randueer invites that were
sent during the experiment after the emulation start-us@lieetric 4). In most

12000 —— . . 3500 : — .
10000 - 1 3000 ¢ 1
> >
3 I | . i
5 6000 S 1500 | .
® 4000t { 2
- . 1000 - -
2000 . 500 + i
0 —’_’M I L O)
0 400 800 1200 1600 0 40 80 120 160
Distribution time (ms) Coverage (peers)

Figure 4.9: The frequencies of the distribution times antivoek coverages for
random peer invites.

52

cases, spreading the invite over a two hop radius is achiesthéh just 500 ms.
Of course, due to the ideal network transmission times ob#v84, we can expect
that real-world distribution times are higher.

Additionally, Figure[4.D (right) shows the number of pedratta single random
peer invite was able to reach after the emulation start-ugs@l{metric 5). The
minimum number of peers that were reached were about 10.pEsrsaverage,
however, the number of peers that were reached was much thd3@ peers. This
is well below the theoretical limit: each peer maintains aximam number of
10 connections with game buddies and an additional 10 cdionsawith random
peers. Random peer invites are spread over a two hop distf@ring us a maxi-
mum of 420 peers that can theoretically be reached. Howewasidering that not
all peers will maintain the maximum number of allowed conimers, and the fact
that many of the neighbours of a peer tend to have connediemgeen each other
(i.e., clustering), this number is considerably lower.

Game-play

Figure[4.10 shows the time it takes to set up a game (metridr6jnost cases,
the game set-up time stays within 100 ms. All measured gatrgpsiémes were
below 350 ms.

Because in competitive games the game clock will often deter whether a
player wins or loses, keeping the game clocks of differeaygis synchronized
is of vital importance. We already have a simple mechanismidne to help us
achieve this (see Sectign 3.8.4), but we would like to knowenaout how large
a typical clock correction is. Figute 4]11 shows how muchrpeeed to correct

5000
4500 + M
4000 +
3500 -
3000 -
2500
2000
1500 +
1000 +

W " .

0 50 100 150 200 250 300 350
Game set-up time (ms)

Frequency

Figure 4.10: The frequencies of the game set-up times dtnagsameCast eva-
luation.

53

the clocks of their opponents (metric 7). Much like the gareeup times, the
maximum clock correction stayed within 450 ms on all ocaasioWithout any
corrections, this would lead to the game clocks differ salvemths/hundreds of
seconds each time a player makes a single move. This woulddea difference
in game clocks at the end of the game.

8000 =

7000

6000 | —

5000 -

4000 + M

Frequency

3000 -

2000

= Mﬂu
O 4

0 50 100 150 200 250 300 350 400 450 500
Clock correction (ms)

Figure 4.11: The frequencies of the clock corrections née¢desynchronize the
game clocks of peers on the emulated network.

Bandwidth usage

In order to test the scalability of the GameCast protocol,hage measured the
average bandwidth usage of all peers in the network. We haasuned the in-
formation dissemination protocol separately, in orderdbagmore clear picture of
how the bandwidth is used.

Figure[4.12 shows the average bandwidth used during theime@ (metrics 8
and 9). When looking at the bandwidth usage of the GameCashemds (i.e., the
messages related to setting up and playing games), we néten average the
bandwidth usage remains within about 200 bytes/second.b@hdwidth used by
the process of information dissemination, also showeddnre{4.12, is only about
550 bytes/second for each player on average. Even duringntiidation start-up,
the bandwidth usage rises quickly to about the same level.

We should point out the we have measured that bandwidth aaphkcation
level, meaning that the lower layers of the TCP/IP model atéaken into account
(e.g. TCP headers, IP headers, etc.). Despite the facthbadtual bandwidth
usage will be higher, we believe that the GameCast protsafficient enough for
real world use, were the bandwidth used by GameCast is pnlidoe noticeable
by the user.

54

900

Avérage GameCast commands bandvieliissss
800 Average GameCast gossip bandwicitinssss

700
600
500
400
300

Bandwidth (bytes/s)

200
100

0 1 2 3 4 5 6 7 8
Time since emulation start (h)

Figure 4.12: The average bandwidth usage of peers on theatduietwork as a
function of time.

55

56

Chapter 5

User testing

In this chapter we elaborate on the results acquired dutimgveo rounds of user
testing. The goal of user testing is to validate that Trifiemeets the functional
requirements specified in Sectionl3.1. In addition, in paldr related to the GUI,
we wanted to gain insight into the user experience. Usdntgstas performed in
two rounds. During the first round, we encountered sevechinieal issues with
the software and protocol itself. After fixing these issues,performed a second
round of user testing, during which the performance of &rifts was on par with
existing centralized solutions. Having studied the rasoitthe questionnaire from
the second (and final) round of user testing, we noticed treaparticipants were
overall positive about Tribler-G in terms of software gtiaind usability.

In Sectiori 5.1l we specify the process that we used while peitfig user testing.
In Sectior 5.2 we provide the results acquired from both dswf user testing.

5.1 Testing procedure

For each round of the user test, we found a group of 6 six Masi&PhD students
in computer science willing to participate. While both rdsrof the user test were
made using 6 volunteers, not all volunteers participateabih tests. The ages of
our volunteers were between 25 and 35 years. None of thetegligwere involved
in the design or implementation of Tribler-G, and none hadrgmowledge of the
system, with the exception of a 20-minute briefing. While \ad la lab room with
standard computer equipment at our disposal, volunteerns parmitted to use an
alternate location. During user testing, the volunteedsndit interact directly.

User testing was done in two iterative rounds, which botltethsround two
hours. The first round was carried out in the early stageseo$diftware develop-
ment process, which gave us time to listen to opinions of gersiand adjust the
software accordingly. During the first round, the TriblesGftware showed per-
formance and time synchronization issues (see Selctiof)5.2he second round
of user testing was carried out several months later, dfeesdftware development
was completed.

57

The process for both rounds of user testing was as followst, Firior to using
the software, the volunteers were briefed about the maifes of Tribler-G and
the purpose of the user test. After the briefing, the volusteere given a question-
naire and a software manual. The manual (see Appéndix Ajges\an overview
of six main features of Tribler-G (e.g., creating a new gaateepting a challenge
from a fellow user), and lists the tasks that should be peréalto use each of them
(e.g., clicking on a button or selecting a certain item frofis. The users were
asked to use this manual while testing the software, and taufithe questionnaire
(see AppendixB) when testing was completed. During the testr an assistant
was present to conduct informal interviews, provide assist, and monitor the
software.

5.2 Testresults

This section describes the results acquired from both mofidser testing. First,
Sectiori 5.2.11 will provide the results from the questiormaSecond, Sectidn 5.2.2
will elaborate on some of the software issues that we disedverhile monitoring
the behaviour of the software.

5.2.1 Questionnaire

Upon completion of the user test, our volunteers were agkéitl but a question-
naire. The questionnaire starts with ten multiple-choigesgjons, followed by four
non-multiple-choice questions. The first seven questidriheoquestionnaire are
used to verify if the users are satisfied with the implemémtadf the functional
requirements listed in Section 8.1. The remainder of thetip@naire is meant to
gain insight into the user experience.

The results of the multiple-choice component of the quastre for rounds one
and two are shown in Tablés 5.1 dnd]5.2, respectively. Shesdftware has not
significantly changed between rounds one and two featuse;wie will discuss
the results of the multiple-choice questions from both dsuim one go. The full
questionnaire is included in this thesis as Appendix B. FRermultiple-choice
questions, users are asked to give their opinion aboutusstatements regarding
Tribler-G using a 5-point Likert scale, where the negatineveers are presented
first.

Considering the results from the first seven multiple-ceajoestions, we can
state that our volunteers are generally positive in regtodbe implementation
of our software. However, they do seem more satisfied withrtiementation
of Tribler-G’s core functionalities (e.g., accepting deabes, sending challenges),
and less satisfied with the other functionalities (e.g¢using games, importing
games from other players). This comes as no surprise sindewated a significant
portion of our development efforts to ensuring that the vasye functionalities
are working perfectly. Furthermore, the answers to the meimgathree multiple-

58

choice questions suggest that our participants were satisith the Tribler-G user
interface and its ease of use, but there still is room for owpment.

Statement No. of responses
++ + 4+ - -
Creating a new game works as | expected. 1 4 0O 1 0

Accepting challenges from other users works withoul 3 1 1 o0
troubles.

Having the ability to import games from the Free InterneB 2 1 0 O
Chess Server (FICS) is usefull.

Having the ability to play a game against the computer i& 4 1 0 O
useful.

Importing game information from fellow users on the net1 3 2 0 O
work works well.

The player statistics give a clear idea of what the ratings df 3 2 1 0
fellow users are.

The ability to attach comments to games played by fellot 2 3 0 O
users works well.

Tribler-G is easy to use. 0 3 1 2 0
The user interface is designed well. 0 3 2 1 0
I am good at playing chess. 0 O 1 4 1

Table 5.1: The opinions of the participants of round one &batious statements
regarding Tribler-G (++ represents strong agreement, resents strong disagree-
ment).

Statement No. of responses
++ + 4/ -
Creating a new game works as | expected. 1 4 0O 1 0

Accepting challenges from other users works withoul 5 0O 0 O
troubles.

Having the ability to import games from the Free Interne8 1 2 0 O
Chess Server (FICS) is usefull.

Having the ability to play a game against the computer i8 2 0O 1 O
useful.

Importing game information from fellow users on the net2 1 3 0 O
work works well.

The player statistics give a clear idea of what the ratings & 2 2 0 O
fellow users are.

The ability to attach comments to games played by fellod 3 2 1 0
users works well.

Tribler-G is easy to use. 0 5 1 0 O
The user interface is designed well. 1 2 3 0 O
I am good at playing chess. 0 O 3 3 0

Table 5.2: The opinions of the participants of round two ah@uious statements
regarding Tribler-G.

59

Next, we will provide the results from the non-multiple-at® questions. We
will not discuss the answers that each participant gaveviohaklly, but give an
impression of what the overall consensus is.

Question 1: What are the positive features of Tribler-G?

Round one:Participants generally found the user interface to be dooking,
responsive, and easy to work with. Additionally, two of tretjipants were par-
ticularly fond of the statistics information that Tribl&-provided.

Round two:Again, almost all participants were happy with aestheticthe user
interface, and found it easy to work with. Some users, eaflg¢hose who also
participated in round one of the user test, noted that thisvaoé was stable and
performed well.

Question 2: What are the negative features of Tribler-G?

Round one:Three out of six participants noticed a high delay while utadeng
certain actions, such as responding to an invitation andngak move (see also
Sectior[5.2.2). Additionally, two of the participants segted that the user inter-
face should provide more feedback. Therefore, after thieréited of user testing,
additional status information and pop-up notificationsenaaded to the software.
Round two: One of the participants pointed out that Tribler-G curngratborts
a game, when one of the players fails to make a move within ithteal time,
but prefers that this player loses the game instead. We plamake this change
in software behaviour in the next version. Another participsuggested that the
messages posted using Tribler-G’s discussion featurddhedisted in the same
order for all users.

Question 3: How would you improve Tribler-G?

Round one:Besides fixing responsiveness problems that occurred wasitip
pants issued commands through the user interface (se®®B&i2), most of the
participants found that the user interface could be morerindtive and sugges-
ted using pop-ups. Additionally, users suggested that wd wo expending the
Tribler-G user-base, which would make it easier to find ogmts on the peer-to-
peer network.

Round two:Two participants suggested including a chat feature whijarae is
being played. Another, suggested that inviting a specifinayaon the network
should be done using the gamer’s user-name rather then thdPeAlso, most
participants would like to see more available games, anéwrinterface that shows
more clearly the status of current games and availableeswiEinally, two out of
the six user suggested that the chessboard should disptagdrately after the
game has started.

Question 4: Would you use Tribler-G again? If not, please explain why.

Round one:Two out of the six participants said that they would use &b is
there were more users on the network. One participant saidhih would use

60

Tribler-G again, if certain actions did not have such higkage The remaining
participant suggested incrementing the number of ganmes shey did not like to
play chess.

Round two:Two out of the six user said that they would like to use Tritikein the
future. All four remaining users, said that they did not litgess, but they would
consider using the software if there were other game avaibwell.

Overall, our participants were happy with Tribler-G in terof software quality
and usability. However, there are still many areas in whigh software can be
improved (see also Sectién b.2 for a list of future work). €ldering the answers
to the question about using the software again, is it impbtia extend the array
of available games in the future.

5.2.2 Software issues

When we did our first round of user testing, we noticed two miggues: the game
clocks were often not properly synchronized during a game,Taibler-G suffered

from a lack of responsiveness when using functions such &ma game move
or accepting an invitation from another player.

Clock synchronization

The clock synchronization issue was caused by the differ&etween the time at
which a player makes a move and the moment the other playedgive a move

(i.e., latency). We have addressed the problem by introdugiclock synchroniza-
tion mechanism that ensures that when a player makes a nmavente taken for

the move in question is also included. The subject of gameksles discussed at
greater length in Sectidn 3.3.4.

Software responsiveness

Concerning the issue of lack of responsiveness, we fourdrtinaing the Bud-
dyCast protocol in the background resulted in significamdydein the application
code. We did not notice the severity of these issues untiliiae testing because,
during the development of GameCast, BuddyCast was detattifar most of the
time. Disabling BuddyCast enabled us to start and test &ivBl instances more
quickly on our development computer. This section will fiert discuss this res-
ponsiveness problem and its solution.

Before we go any further, it is useful to explain how Triblees various threads
of execution while passing messages over the secure ovédaye already men-
tioned in the introductory chapter, Tribler's secure cagitnables high-level com-
munication between peers. Tribler protocols, such as BQddy ChannelCast,
and of course GameCast, use the secure overlay to send gmsages. When Tri-
bler sends or receives a message over the secure overlsgsimultiple threads of
execution to complete the operation. There are two thregldgant to the passing

61

of messages over the secure overlay. First, Tribler has aratepthread, called
the network thread that handles all network related tasks, such as receiving a
sending messages. Second, Tribler has another threast] tadbverlay threadto
execute the protocols that run on the secure overlay. Theoniethread and over-
lay thread are in constant contact with each other. Forniestavhen a BuddyCast
message arrives, the network threads reads the messagéh&oratwork socket,
and passes the message to the overlay thread, which pretlessaessage further.
Similarly, when Tribler decides to send a BuddyCast mesghgeoverlay thread
will create the message and subsequently pass it to the rietiread, which will
ensure that the message is written to the network sockeivies such as writing
to a database or file also frequently occur on the overlaythréhe overlay thread
is implemented as a simple queue of tasks which get execuedta time. Other
threads schedule these tasks and the overlay thread exdbage tasks in FIFO
order.

As we suspected that the responsiveness issues are relatgivities that mostly
utilize the overlay thread, we measured the delays of thes tgecuted by the over-
lay thread. We found that the overlay thread was severelgiaaded, to the point
that the application was becoming non-responsive. Figdisttows that delays of
the tasks that were executed within the first 60 minutes aftet-up. In the most
severe case, a task was delayed for 4.5 minutes. Clearlyséaneeds to wait over
4 minutes to send a message, that user will mostly be diguesish our software.
However, when running Tribler-G with BuddyCast disabléxd delays of the tasks
stay below 3 seconds. We also measured the delay of task€aitteCast disa-
bled (and BuddyCast enabled) and still noticed very highytel Since BuddyCast
does not require the timely sending or receiving of messatese delays have
never been reported as a problem by users, in the past.

300

" Task delay with Budd)/Cast and GameCast— |
.Task delay with only BuddyCast

250 | ¢ Task delay with only GameCast

200

150

Delay (s)

100 -

50

ol ‘ ‘ ‘/‘H ;A'/\AA. oM
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Figure 5.1: Delays of scheduled tasks on the overlay thrdalé winning Tribler-
G based on Tribler 5.2.1.

Since the problem seems to be caused by Tribler-G compoo#rds than Ga-

62

meCast, and the Tribler version that we used as a basis foleffG was almost
a year old, we decided that moving to a recent version wasopppte. Much to
our surprise, the delay problems of the overlay thread sédmieave disappeared
completely. When running Tribler-G based on Tribler 5.3t#% delays of tasks
peak stayed below 4.5 seconds, on all occasions (see Eigl)réN®te that the ac-
tual delays will likely be lower, since taking these meamgats require additional
debugging code to be executed. After looking further inis thatter, we found
that the ChannelCast protocol used in Tribler 5.2.1 usey mexfficient means to
access the database. Thisissue has been fixed in more recgahsg, significantly
reducing the load on the overlay thread and therefore aésdetays of the tasks.

4

" Task Helay with Budd))Cast and GameCast— |
Task delay with only BuddyCast

351 Task delay with only GameCast

3L
25+

2 b

Delay (s)

15+

1+

0.5 ‘ ‘]

i T
0 500 1000 150 2000 2500 3000 3500
Time (s)

Figure 5.2: Delays of scheduled tasks on the overlay thrdalé winning Tribler-
G based on Tribler 5.3.8.

To further suppress task delays, we have also created aasefaameCast
thread. The GameCast thread is only used for tasks on whechdér is waiting
(i.e., high-priority tasks), for instance, making a moveeaplying to an invitation.
Tasks of which the user is unaware (i.e., low priority tasksgh as sending mes-
sages related to the information dissemination proceesscireduled normally on
the overlay thread.

In conclusion, the major problems of Tribler-G have beeolkes, as indicated
by the responses of our test users, after round two of testing

63

64

Chapter 6

Conclusion

In Sectior 6.11 we give a summary of our work and provide ouckaions. Next,
in Section[6.2, we propose future work that would further riawe our current
system.

6.1 Summary and conclusions

In this thesis we have presented a decentralized systenaltbats users to play
turn-based board games over a peer-to-peer network. Ouantiimplementation,
called Tribler-G, is build as an extension to the Tribler-8learing application, and
focuses on enabling users to play online chess. Triblergpats all main gaming
features that traditionally only exist on systems with at@@rauthority, such as
the Free Internet Chess Server (FICS), and realizes themdnentralized setting.
The result is a scalable and easy to use application thasaffdine chess players
an attractive alternative to the current centralized sesjiwhich typically generate
revenue using advertisements and subscription fees.

In order to solve the problem of playing chess over a pegetr- network, we
have designed and implemented GameCast, a protocol whish players to ex-
plicitly invite one another or invite any player within a t&n rating. Additionally,
besides the functionalities required for playing a gamen&aast will ensure that
finished games are distributed throughout the network.gPareceiving the game
will be able to review the game and attach comments. Degpitéatt that Tribler-
G currently only implements online chess, GameCast hasdesigned to support
a variety of turn-based board games, including games tlqaireemore than two
players.

To realize the GameCast protocol, we use an epidemic mesrhdaiallow peer
discovery and game distribution within the network. Adufitally, we have have
based the GameCast command syntax on a protocol commordybysenline
chess servers, known as the ICS protocol. Furthermore, gohanmisms used for
player invitation and for playing a game are based on thetltdor each game, its
creator/owner is responsible for administrative taskdsaagnotifying all players

65

that the game has started, distributing game informatiahersuring that com-
ments are distributed.

In order to evaluate the performance of the GameCast priptwechave created
GameTest, a system capable of emulating a peer-to-peeomeby starting or
stopping a Tribler-G instance for each joining or leavin@mpdJsing GameTest,
we conducted a large-scale emulation on the DAS-4 disttbsupercomputer.
Additionally, using small groups of six people, we perfodreo initial rounds of
user testing. Based on the results acquired during the domlas well the user
testing, we can draw the following conclusions:

GameCast is effective.Based on the observations made during the emulation, an
opponent on the network can typically be found in a matteeobads. When
sending random peer invites, the invites often reachedtatiopeers, which
is sufficient to find a suitable opponent. When an opponenvusd and
a game is being played, our clock synchronization mechanmsistently
ensured that the game clocks of the players remain synawniFurther
strengthened by the positive outcome of the user testingzomelude that
the GameCast protocol is an effective means to providinglsirgaming
functionalities over a peer-to-peer network.

GameCast is scalable.Excluding overhead caused by TCP/IP message headers,
GameCast uses only 750 bytes/second on average for a peex dlotively
playing chess. Of this average bandwidth, about 550 bytes/sl can be at-
tributed to gossiping messages. Since each peer sendssipigg messages
at a constant rate, an increase in the network size of thetpgeer network
will not result in an increased bandwidth usage for eactviddal peer. Fur-
thermore, the bandwidth caused by the execution of Game@astnands
is limited by the number of actions a chess player can maklgmat certain
time period. However, the bandwidth may increase in a lessdannected
network, due to the spreading of invites across a two-housadHowever,
since the number of simultaneous connections that a peenaarain with
other peers is bounded, the number of peers that a single ican reach
also has an upper bound.

6.2 Future work

While Tribler-G is a considerable step towards creating @lime distributed so-
cial network on which users can play board games, there ilirguste a few areas
in which Tribler-G can be improved. We have categorized éhegprovements
into two main groups: improvements that fix existing techhissues, and im-
provements that somehow extend the system. For the firspgvesi feel that the
following are among the most important:

Improving the synchronization mechanism When playing a game, each player
keeps track of how much time each of the players has used.dddarmever,

66

the time that passes between the moment at which a playesraakeve and
the moment the other player(s) receive a move, will resultriroffset bet-
ween the clocks of the players. The FICS deals with theseanktiatency
issues by introducing Timeseal, an application that runtherplayer’s ma-
chine and notifies the FICS of the time that the player hastédenake a
move. The GameCast time synchronization mechanism claesbmbles
Timeseal, in that both mechanisms measure that time a meviaken from
the player's perspective. Unfortunately, since a playenis trusted entity,
this mechanism also introduces a vulnerability which isliiko be exploited
by malicious users. Therefore, we would like to alter ourenr mechanism
so that it would be more tamper proof.

Improving GameCast security An issue with GameCast, and peer-to-peer net-
works in general, is what happens when one or more malicieesspare
introduced into the network. For instance, malicious peerdd start dis-
tributing fake game information in order to affect the rgtiof a player (i.e,
Sybil attacks).

Dealing with NAT firewalls Many computers connected to the internet today are
behind NAT firewalls. NAT creates a private |P address reapagte from
the Internet, which often results in difficulties acceptingoming connec-
tions from external hosts. This results in a number of issilen unconnec-
table peers are using GameCast. For instance, a peer beNist firewall
receives a random peer invite from game buddy, but is unabtespond
because that peer is behind a NAT firewall and cannot accemtrgection.
A possible way of increasing the usability for users that sahaccept in-
coming connections, could be to increase the role of thersugers (e.g.,
messages between peers could be passed trough a conneufaigeer).

Further research into protocol parameters Further research is required in order
to determine what the effects of different GameCast pamammeire. For
instance, peers involved in information distribution averently only allo-
wed to send/receive messages every 5 minutes. How wouldyictzathis
parameter affect the bandwidth usage?

Concerning the second group of improvements, which wouldrekTribler-G,
we feel that the following are among the most important:

Extending the number of available gamesMany people do not know how to play
chess or simply do not like it. Therefore, we would like toend the number
of available games to include, for instance, Scrabble, Mohyp Checkers,
and Go.

Support for random number agreement We would like to include a mechanism
that allows peers to agree on a random number, which would dehe-
rate random content for games that require this. Think fstaimce of board
games such as Scrabble and Rummikub, or card games suchassHaix
dem Poker.

67

Penalize leaving the game before it is oveCurrently, when a game expires (i.e.,
one of the players fails to move in time) it is discarded. Téffectively
means that a player who is loosing a game can simply stopngagiorder
to prevent a negative impact on his/her rating. Thereforéyture versions
of Tribler-G, the player that fails to move in time should lmnsidered the
loser of the game.

Extending the number of GameCast featuresCurrently GameCast supports the
most basic functionalities in order to allow players to pgames against
each other. However, there are also a number of additiomaitifunalities
that we feel would improve the gaming experience. Thesetiumalities
include allowing users to observe a game in progress, aipapponents to
chat while playing a game, support for unrated games (iseneg of which
the outcome does not affect the ratings of the players)wallp players to
suspend/resume games, support for game tournamentsysigopmti-spam
functionalities for the discussion board, allowing for timessages in the
discussion board to be nested and ordered, offering chssadtion videos
through the Tribler download feature, and introducing sddamel of trust
rating for players.

Unique user namesLike the standard Tribler application, Tribler-G identifijgeers
on the network using quasi-unique permanent identifiersilathese iden-
tifiers can be considered unique, the user names are noefbherit stands
to reason that at some point the user will be confronted witlipie players
on the network using the same user name. This can make idegtd cer-
tain player difficult. Therefore, we would like future TréstG releases to
support unique user names, if possible.

68

Bibliography

[1] Call of duty modern warfare 3htt p: // ww. cal | of duty. com’ mn3.
[2] Chess on facebookhtt p:// apps. facebook. coni chessfb.

[3] Das-4: Distributed asci supercomputert.t p: / / ww. cs. vu. nl / das4.
[4] Diaspora.htt ps://j oi ndi aspora.com

[5] Free internet chess servért t p: / / www. f r eechess. or g.

[6] Gnuchesshttp://ww. gnu. or g/ sof t war e/ chess.

[7] Gnu social.htt p: // ww. gnu. or g/ sof t war e/ soci al .

[8] Gnutella.htt p: //www. gnut el | a. com

[9] Internetchess clutht t p: / / www. chesscl ub. com

[10] Kgs go serverhtt p: // www. gokgs. com

[11] Noserubhtt p://noserub. com

[12] Yahoo! chessht t p: // ganes. yahoo. cont ch.

[13] 20 Million Unigue Players Log Into Call Of Duty Every Mém ht t p: // www.
xboxdai | ynews. conf 2011/ 09/ 05/ 20- mi | | i on- uni que- pl ayer s-
| og-into-call-of-duty-every-nonth, 2011.

[14] Social Gaming on Track to Become 5 Billion Industry by1%0 http://
www. par ksassoci at es. com bl og/ articl e/ parks- pr2011-
soci al gam ng, 2011.

[15] Haakon Bertheussen. Wordfeud. t p: / / www. wor df eud. com

[16] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Theokhascibroda, Jeffrey
Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrookbliegalarge-scale,
high-speed, peer-to-peer gamesSIGECOMM pages 389-400, 2008.

[17] Blizzard Inc. World of Warcraft subscriber base reach&l.5 mil-
lion worldwide. http://us.blizzard.conlf en-us/conpany/ press/
pressrel eases. ht nl 7081121, 2008.

[18] Blizzard Inc. World of Warcraftht t p: / /us. bat t| e. net / wow en/, 2011.

[19] Egbert Bouman. A survey of developments in online doeé&works. Technical
report, Delft University of Technology, 2010.

[20] Danah M Boyd and Nicole B Ellison. Social network sit€efinition, history, and
scholarshipJournal of Computer-Mediated Communicatjdi(1):210-230, 2008.

[21] Pete Cashmore. FarmVille Surpasses 80 Million Usdnst p: / / mashabl e.
coni 2010/ 02/ 20/ farnvill e-80-million-users, 2010.

[22] lan Clarke, Oskar Sandberg, Brandon Wiley, and Theedgr Hong. Freenet: a
distributed anonymous information storage and retrieyatesn. Ininternational
workshop on Designing privacy enhancing technologiesigidssues in anonymity
and unobservabilitypages 46-66, 2001.

[23] B. Cohen. Incentives Build Robustness in BitTorrentWorkshop on Economics of
Peer-to-Peer Systemislay 2003.

69

http://www.callofduty.com/mw3
http://apps.facebook.com/chessfb
http://www.cs.vu.nl/das4
https://joindiaspora.com
http://www.freechess.org
http://www.gnu.org/software/chess
http://www.gnu.org/software/social
http://www.gnutella.com
http://www.chessclub.com
http://www.gokgs.com
http://noserub.com
http://games.yahoo.com/ch
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.wordfeud.com
http://us.blizzard.com/en-us/company/press/pressreleases.html?081121
http://us.blizzard.com/en-us/company/press/pressreleases.html?081121
http://us.battle.net/wow/en/
http://mashable.com/2010/02/20/farmville-80-million-users
http://mashable.com/2010/02/20/farmville-80-million-users

[24]

[25]
[26]
[27]
[28]
[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]

Carlton R. Davis, Stephen Neville, José M. Fernandean-Marc Robert, and John
Mchugh. Structured peer-to-peer overlay networks: Idedhdéts command and
control infrastructures? IRroceedings of the 13th European Symposium on Re-
search in Computer Security: Computer SecuriBsORICS '08, pages 461-480,
2008.

Mark E. Glickman. Parameter estimation in large dyrapdired comparison expe-
riments.Applied Statistics48:377—-394, 1999.

Thorsten Hampel, Thomas Bopp, and Robert Hinn. A pegyeer architecture for
massive multiplayer online games. NetGamespages 48-52, 2006.

Betjeman House. Technical report : An estimate of imding use of the internet.
Analysis (January):1-56, 2011.

Robert M. Hyatt. Craftyht t p: // ww. cr af t ychess. conj 1994,

Bonnie E. John and David E. Kieras. The goms family ofrusterface analysis
techniques: comparison and contra8CM Trans. Comput.-Hum. Interac8:320—
351, December 1996.

Nick O’'Neill. 66 percent of facebook traffic is to gameshtt p:// waw.
soci al ti mes.com 2010/ 04/ 66- per cent - of - f acebook-traffi c-

i s-to- ganes, April 2010.

OpenTTD team. OpenTTD, 2010t t p: / / ww. opent t d. or g.

J.A. Pouwelse, J. Yang, M. Meulpolder, D.H.J. Epemal, idn). Sips. Buddycast: an
operational peer-to-peer epidemic protocol stackPioc. of the 14th Annual Conf.
of the Advanced School for Computing and Imagjpages 200-205, 2008.

J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yaagdosup, D. H. J. Epema,
M. Reinders, M. R. van Steen, and H. J. Sips. Tribler: a sdzaakd peer-to-peer
system: Research articleSoncurr. Comput. : Pract. Exper20:127-138, February
2008.

Jelle Roozenburg. Secure decentralized swarm disgaveribler. Master’s thesis,
Delft University of Technology, 2006.

lon Stoica, Robert Morris, David Karger, M. Frans Kaask, and Hari Balakri-
shnan. Chord: A scalable peer-to-peer lookup service termet applications. In
Proceedings of the 2001 conference on Applications, tdolies, architectures, and
protocols for computer communicatiQqfdGCOMM '01, pages 149-160, 2001.
David Kieras University and David Kieras. Using the kipke-level model to esti-
mate execution times, 1993.

M. Varvello, C. Diot, and E. W. Biersack. P2P Second LEperimental Validation
Using Kad. ININFOCOM pages 1161-1169, Apr. 2009.

Anthony Peigun Yu and Son T Vuong. MOPAR : A Mobile PeeiReer Overlay
Architecture for Interest Management of Massively Mubiyér Online Games. In
NetGamespages 99-104, 2005.

70

http://www.craftychess.com
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.openttd.org

Appendix A

Guided examples of using
Tribler-G

This is a getting started guide for Tribler-G, and was usedrduuser testing (see
Chapter®).

Example 1: Installing and configuring Tribler-G

Before using Tribler-G for the first time, you need to insitiflo your machine.
Additionally, after Tribler-G is installed, you will need set a number of settings
in order to use the software properly. The entire processldhmly take a few
minutes.

1. First, go to the Tribler-G websitéit t p: //tri bl er-g. org.

2. Ifyou are using a Windows PC, download and execute the SMmdnstaller
and follow the instructions. When entering the installatfath, be sure to
enter a location that you have write access to. After thailagion is com-
plete, launch Tribler-G from the Windows start menu (itgeldsas "Tribler’).

If you are using a Linux PC, download the Tribler-G archive f;mux and

open it by double-clicking the file. After opening the arahiextract the
folder 'Tribler-G-linux’ to a location you have write acce$o (e.g., your
home folder). Next, open the folder you just extracted inftieemanager,
and double-click on the file 'run.sh’. At this point, you whle presented
with a message box asking you what action to take. Click on',rafter

which the Tribler-G application should execute.

3. Now that you have started Tribler-G, select the 'Settibgtton from the top
bar of the screen. You will now see a window, which, among rothimgs,
allows you the set-up a profile and a port number.

4. Next, you need to set-up a nickname, so that fellow usetsenetwork are
able to recognize you. Make sure that the 'General’ item liscéed in the

71

http://tribler-g.org

listing on the left side of the settings window. You shouldvize presented
with a form which allows you to set your nickname. Next, fillimickname
of your choosing.

5. We need to make sure that external peers are able to comnécibler-
G by setting up the correct port number. To do this, make shaie the
'Connection’ item is selected in the listing on the left siofethe settings
window. Ensure that the port number is set to a port that iessible from
the internet, and click the 'Save’ button.

6. Restart the application. Tribler-G is now ready to use.

Example 2. Accepting peer-to-peer challenges

Before you can play a game, you need to find a suitable oppametiite network.
This is done by either accepting a challenge from anothereplar by creating
a challenge yourself. In this example we will accept an @gsthallenge from
another player.

1. The top bar of the Triler-G user interface allows you to lgmtigh the dif-
ferent panels within Tribler. This bar is included in anyrstard Tribler
installation, and the Tribler-G merely adds an additiofizhmes’ button to
the bar. Please click the 'Games’ button. After doing so,gaming user
interface is displayed, which encompasses the bottom twelpalisplayed
in Figure[Al. The left panel presents an overview of theantty imple-
mented games (to date, the only game available is chess)rigitgranel
allows you to play the game that is selected in the left panel.

] TekerG 3380
LS

Search Files of Channel

Games

atitics of other glavers

The highest ranking pisyers wehin weur part of the retwark are (double-chck bo iniitel:

To fesm what ratings se mmmon. please vist the [[ECEERIEICEC

i
(1
I

dowage (7] 08 b 0B a

Figure A.1: Viewing player statistics.

72

2. Please click on the 'Find Opponents’ tab. This will brirguyto a screen that
shows all challenges that you are eligible to accept (sear€&li§.2). At any
time there can be different challenges available.

g Repusation: dewage (3] 18 fmwn 0 B

Figure A.2: Viewing outstanding challenges.

Tribler-G differentiates between a number of differenteymf challenges.
First, challenges issued by chess players on the peeretoratwork. Se-
cond, challenges issued by automated chess players, whidalvchess-
bots. Chessbhots allow you to play a game of chess on the pémer net-
work in case that no human players are available (these 1glaygm be re-
cognized by their name, which starts with 'chesshot’). Bna&hallenges
issued by chess players on the FICS network. These chadlesrgeonly
shown when the option 'Import unrated challenges from FliS§&nabled.

Challenges have several parameters. The 'opponent’ aimtjr@aarameters
state your opponent’s name and rating. The 'l play as’ paranstates the
colour that you will be playing with if you accept the chalign Next, para-
meter 'time / inc’ denotes the timing settings for the chdeslc The 'time’
value denotes the start time in minutes to which the cloclaohelayer gets
set, and the 'inc’ value refers to the time in seconds witholvlihe clock of
a player is incremented when a move is made.

3. We will start with playing a game of chess over the peguder network
by accepting a challenge. If available, pick a challengaedsby a human
player on the peer-to-peer network (i.e., an opponent wia'se does not
start with 'chessbot’), otherwise pick a chessbot chalbken@ouble-click
on the challenge that you picked. This will cause TriblereGcontact the
challenger. If the challenger accepts your response, tiéecige will disap-
pear from the list and reappear on list of current games thaiye playing,
which can be found on the 'Online Chess’ tab (see Figuré A.3).

73

Sharrg Reputation: Jvwage (7] 08 bewn 0Bil]

Figure A.3: Viewing active games.

4. At this point you should have a single game entry listed twa 'Online
Chess’ tab. Double-click on the game entry in order to go ¢octhessboard
screen. You should now be presented with a screen similaetorie shown
in Figure[A:4. The screen shows the game information: opponame,
your clock/opponent’s clock, the colour you play with, andiet colour is
next to move. Below that, you'll find the game record, whichpiiys all
the game moves that have been made. Also, the button 'Backetwiew’
will take you back to the previous screen, and the littledouttext to it will
allow you to issue an abort, draw, or resign request. For lbloet@nd draw
request the other player will need to agree for the requdst executed.

5. Now for the actual playing of a game. When it is your turn tovey you
can click one of your chess pieces, and all the valid moves/thacan take
using this piece will be marked on the board. If you are unfiamith the
rules of chess, you could take a look at http://www.chess/learn-how-to-
play-chess.html.

6. Finish your game of chess. Once you have finished, the matod the game
will be determined. Unless the game has ended due to a time-an abort
by agreement, the game will now be displayed in the 'Discusaas’ tab,
which we will discuss later.

Example 3: Accepting FICS challenges

Since there does not yet exist a community of users that érttyuplay chess on
the Tribler network, itis entirely possible that you will iyourself unable to find a
suitable opponent on the game network. To prevent you franghenable to play
a game, Tribler-G is able to import additional invites frdme t-ree Internet Chess

74

| Sharrg Reputation: Jvwage (7] 08 bewn 0BLle L]

Figure A.4: Playing a game of chess against an online opponen

Server or FICS. Playing these games will not affect youngatiln this example
we will accept a challenge from a FICS user.

1. Goto the challenge list on the 'Find Opponents’ tab.

2. Check the 'Import unrated challenges from FICS’ optiotiteAwaiting for
several seconds while Tribler-G is querying the FICS senwau will find
additional challenges in this list. These challenges carebegnized by the
absence of an expiration time.

3. Accept a challenge from a FICS user by double-clickindf inothings hap-
pens, it will be because the challenge was already taken dthanuser. In
this case try double-clicking a different FICS challenge.

4. The game itself works exactly the same as with games playedthe peer-
to-peer network, except that you can only play one FICS gansetiane.
Once you have finished the game, it will no longer be displapettie list
of current games. Also, games that has been played on FIG®atibe
displayed in the 'Discuss games’ tab, and the game will beovexth after is
has been played.

Example 4: Creating a new game

Next, we are going to create a new game. A new game should tigimescreated
when you can not find any acceptable challenges, or when ysh twiinvite a
specific player.

1. In order to create a new game, you will need to go to the ehgd list on
the 'Find Opponents’ tab.

75

2. Click on the 'Or, create a new game’ button. This will résnlthe screen

shown in Figuré Ab.

. As the creator of the game, you can specify several paeameFirst, the
type of opponent that you want to play. You can choose to plggarae
against a random opponent of a certain rating, or play a g@aiest a spe-
cific user, which should be identified using his/her permigl (the string that
Tribler-G uses to identify the peers on the network). Negrty gan choose
which colour you want the play with. Finally, we need to chedse timing
parameters for the chess clock. The chess clock takes tvaoneters, na-
mely the start time in minutes to which the clock of each playeds set, and
the time in seconds with which the clock of a player is incrated when a
move is made. Setthe opponent to random’, set the othenyeas to wha-
tever you prefer, and click 'Create new game’. At this poinbler-G will
attempt to spread a challenge throughout the peer-to-pawiork. If you
receive an error message stating that there are not enoaggrglconnected,
please try again after a few minutes.

. If the game was created successfully, there will now bevaeardry in the
list of your currently outstanding challenges. Once arnutiser accepts your
challenge, the entry will disappear and will re-appear i likt of current
games on the 'Chess Online’ tab. At this point you may haveeip la
fellow user out by accepting his/her challenge, becauserwathe none of
the challenges will get excepted.

5. Play the game like you would normally.

| r—

Avnialis e ol Pizyer stmvzics | @) onine Chess | 23 Find oppanents | B vs compute |) Discuss Gomes
Chess

£ randern pla: ver LR whits 56 0:52:53

Craste n new gome

1 Dpponerts random = [wih rating ietween 0 ana’ ¥R
Calour to play wen: [whae =
Clock time fo stat: % minutes (enter 4 umber betwasn 1:994]

Incramentsl deck Lmer 50 wecands [enier & buriber bekenan 0-395]

Figure A.5: Creating a new game.

76

Example 5: Viewing statistics from fellow users

1. Please click on the 'Player statistics’ tab. You shoultb®presented with
statistics related to all games that were gathered duriagligtribution pro-
cess, as well as your own games. The top panel shows you yog (ahen
players first join the network, they receive a rating of 15804 how many
games were won/lost, while the bottom panel shows the samef the top
25 chess players within the network.

2. Click on the 'Rating distribution’ button. You will now sea histogram of
the rating distribution of known players in the network. Jhiiagram is
meant to give you a more global picture of ratings of othenkmaosers.

Figure A.6: Reviewing a game.

Example 6: Using Tribler-G’s review feature

1. Please click on the 'Discuss games’ tab. At this point ydlll see a list
of all known games (including games that have been gathanedgdthe
information dissemination process). Since the list carwgrather large,
there is also a search option which allows you to display galyes related
to a particular player.

2. Double-click a random entry, and you will have access ¢oréview panel
(see Figuré_AJB). In the review panel you can visually browtseugh all
the moves that have been made during the game using the yseno next
button.

3. Next, click on 'View Messages’, which will bring you to tisereen were all
known messages pertaining to the game in question are.listed

77

4. Now, create a new message by clicking 'New’, at which pgot can fill in
the message you would like to send. The message can be setidkiygc
'Post’. Once you have sent your message, the user that dribetgame will
first receive the message. After that, the creator will sdastributing the

newly received message in future gossip messages (whichtakaysome
time).

T o
|

|
| Sharrg Reputation: Jvwage (7] 08 bewn 0BLle]

Figure A.7: Viewing the list of messages related to a game.

This completes the guided examples of using Tribler-G.

78

Appendix B

Tribler-G questionnaire

This questionnaire was used for collecting user experigerdiging user testing
(see Chapterls).

1. Creating a new game works as | expected.
O Strongly disagree

O Disagree

O Neutral

O Agree

O Strongly agree

2. Accepting challenges from other users works without trobles.
O Strongly disagree

O Disagree

O Neutral

O Agree

O Strongly agree

3. Having the ability to play a game against the computer is usful.
O Strongly disagree

O Disagree

O Neutral

O Agree

O Strongly agree

79

4. Having the ability to import games from the Free Internet Chess Server
(FICS) is usefull.

O Strongly disagree
O Disagree
O Neutral
O Agree
O Strongly agree
5. Importing game information from fellow users on the netwak works well.
O Strongly disagree
O Disagree
O Neutral
O Agree
O Strongly agree
6. The player statistics give a clear idea of what the ratingsf fellow users are.
O Strongly disagree
O Disagree
O Neutral
O Agree
O Strongly agree
7. The ability to attach comments to games played by fellow @ss works well.
O Strongly disagree

O Disagree

O Neutral

O Agree

O Strongly agree

8. Tribler-G is easy to use.
O Strongly disagree

O Disagree
O Neutral
O Agree

O Strongly agree

80

10.

11.

12.

13.

14.

. The user interface is designed well.

O Strongly disagree
O Disagree

O Neutral

O Agree

O Strongly agree

Do you know how to play chess?
O No

O Yes, but barely

O Yes, but | could use some practice

O Yes, | am quite good at chess

O Yes, | am a grandmaster

What are the positive features of Tribler-G?

What are the negative features of Tribler-G?

How would you improve Tribler-G?

Would you use Tribler-G again? If not, please explain why

81

	Preface
	Introduction
	Online gaming systems
	Online social network systems
	Peer-to-peer networks
	Epidemic protocols
	Contributions
	Thesis layout

	Background
	Related work
	Centralized gaming systems
	Decentralized gaming systems

	Building blocks
	BuddyCast
	Internet Chess Servers

	Design and implementation of GameCast
	Functional requirements
	Non-functional requirements
	The GameCast protocol
	Design overview
	Information dissemination
	Game agreement
	Game-play

	The Tribler-G graphical user interface

	Evaluation of GameCast
	The DAS-4
	Emulation environment
	Architecture of GameTest
	Input scenario
	Peer behaviour
	Logging features

	GameCast evaluation
	Performance metrics
	Scenario generation
	Experimental results

	User testing
	Testing procedure
	Test results
	Questionnaire
	Software issues

	Conclusion
	Summary and conclusions
	Future work

	Guided examples of using Tribler-G
	Tribler-G questionnaire

