
Tribler-G: A Decentralized Social Network
for Playing Chess Online

Egbert Bouman

Tribler-G: A Decentralized Social Network
for Playing Chess Online

Master’s Thesis in Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Egbert Bouman

19th February 2012

Author
Egbert Bouman

Title
Tribler-G: A Decentralized Social Network for Playing Chess Online

MSc presentation
1st March 2012

Graduation Committee
prof.dr.ir. D. H. J. Epema (chair) Delft University of Technology
dr.ir. A. Iosup Delft University of Technology
dr.ir. A. R. Bidarra Delft University of Technology

Abstract

There are currently many systems that offer online board games, for instance,
social networking sites, where board games enjoy enormous popularity, but also
systems such as the Internet Chess Club, which has been around for over a de-
cade. However, these systems are all centralized and typically have drawbacks for
the user, such as subscription fees or advertisements. As analternative, we have
designed a decentralized protocol, called GameCast, that enables users to play turn-
based multi-player board games over a peer-to-peer network.

The GameCast protocol supports three processes, dissemination of peer and
game information within the network, game agreement, whichallows one peer
to invite another by sending invites, and game-play, which enables peers to play
a game over the network. Our current GameCast implementation, called Tribler-
G, is built as an extension to the Tribler file-sharing application, and focuses on
enabling users to play online chess through the Tribler-G GUI.

To evaluate the performance of the GameCast protocol, we have created Game-
Test, a system capable of emulating a peer-to-peer network.Using GameTest, we
have conducted a large-scale emulation of hundreds of peerson the DAS-4 distribu-
ted supercomputer. The results acquired during the emulation show that GameCast
scales well and uses little bandwidth. Additionally, we have performed user tests,
the results of which show that users are generally positive about Tribler-G in terms
of usability.

iv

Preface

The document before you is my Master of Science thesis, and represents my final
work as an MSc student. The presented research was performedat the Parallel and
Distributed Systems group of the Faculty of EEMCS of Delft University of Tech-
nology. This thesis describes my research on the creation ofa decentralized system
that allows users to play turn-based board games over a peer-to-peer network.

There are a number of people that I would like to thank for their support and help in
making this thesis. First, I would like to thank Alexandru Iosup and Dick Epema
for giving me invaluable help and advice during my work. I would also like to
thank my parents for their support, both morally and financially. Furthermore, I
would like to thank the members of the graduation committee for taking the time
to read this document and for providing many helpful suggestions. I would further
like to thank Boudewijn Schoon and the other members of the Tribler team for their
comments and suggestions. And finally, I would like to thank the volunteers who
participated in the user testing.

Egbert Bouman

Delft, The Netherlands
19th February 2012

v

vi

Contents

Preface v

1 Introduction 1
1.1 Online gaming systems . 2
1.2 Online social network systems 3
1.3 Peer-to-peer networks . 4
1.4 Epidemic protocols . 5
1.5 Contributions . 6
1.6 Thesis layout . 7

2 Background 9
2.1 Related work . 10

2.1.1 Centralized gaming systems 10
2.1.2 Decentralized gaming systems 10

2.2 Building blocks . 11
2.2.1 BuddyCast . 11
2.2.2 Internet Chess Servers 12

3 Design and implementation of GameCast 17
3.1 Functional requirements . 18
3.2 Non-functional requirements . 20
3.3 The GameCast protocol . 21

3.3.1 Design overview . 21
3.3.2 Information dissemination 21
3.3.3 Game agreement . 26
3.3.4 Game-play . 28

3.4 The Tribler-G graphical user interface 32

4 Evaluation of GameCast 37
4.1 The DAS-4 . 37
4.2 Emulation environment . 38

4.2.1 Architecture of GameTest 38
4.2.2 Input scenario . 39
4.2.3 Peer behaviour . 41

vii

4.2.4 Logging features . 44
4.3 GameCast evaluation . 46

4.3.1 Performance metrics . 46
4.3.2 Scenario generation . 48
4.3.3 Experimental results . 49

5 User testing 57
5.1 Testing procedure . 57
5.2 Test results . 58

5.2.1 Questionnaire . 58
5.2.2 Software issues . 61

6 Conclusion 65
6.1 Summary and conclusions . 65
6.2 Future work . 66

A Guided examples of using Tribler-G 71

B Tribler-G questionnaire 79

viii

Chapter 1

Introduction

Despite the availability of many modern online games which use complex 3D gra-
phics, traditional board games are still quite popular, as evidenced by their popula-
rity on online social network systems. Think, for instance,of games available on
Facebook such as Chess, Checkers and Go. Further strengthened by the enormous
popularity of board games on smart phones and tablet devices, it is likely that board
games will continue to flourish for the foreseeable future.

Currently, users who wish to play board games online have a number of options.
For instance, they can choose to use social networking sites, such as Facebook, or
websites that offer similar services, such as Yahoo! Games.Additionally, there
are also several services in existence that focus on one particular game, such as the
Internet Chess Club (ICC), the Free Internet Chess Server (FICS), and the KGS Go
Server. However, what most of these services have in common is that they need
to generate revenue, which typically means users have to endure advertisements
or pay subscription fees. Furthermore, the centralized architecture used by these
systems introduces a single point of failure, high game hosting costs, and poor
scalability characteristics.

To provide users with a more attractive alternative to the current systems, we
have created a decentralized system that allows users to play turn-based board
games over a peer-to-peer network. The protocol that governs the interactions bet-
ween peers in our decentralized gaming system is called GameCast. In order for
the system to function properly, we need GameCast to addressseveral problems.
First, we need an overlay network which we can use for the distribution of peer and
game information. GameCast realizes this through the use ofan epidemic mecha-
nism, similar to the one used by the Tribler peer-to-peer file-sharing application
[33], which was also developed in Delft. Secondly, with the overlay network in
place, we need a mechanism that allows people to contact eachother and agree
to play a game. And finally, once a game agreement is reached, we require me-
chanisms to allow for the actual game-play. The current implementation of our
decentralized gaming system, called Tribler-G, is built asan extension of Tribler,
and focuses on enabling users to play online chess.

1

Figure 1.1: Predicted social games market growth [14].

In this chapter we provide an introduction to online gaming systems, social net-
work systems and peer-to-peer networks; it is organized as follows. Section 1.1
gives an introduction to online gaming systems, and goes into detail about several
aspects of current systems. Sections 1.2 and 1.3 discuss online social network sys-
tems and peer-to-peer networks, followed by Section 1.4 which discusses epidemic
protocols. Section 1.5 states the contributions of this thesis. Finally, Section 1.6
provides an overview of the remaining chapters.

1.1 Online gaming systems

In this section we will discuss several aspects of online gaming systems, begin-
ning with the groups of games that are currently popular: social games, massively
multi-player online games or MMOGs, and casual games. First, social games are
games that integrate with social networking sites (see Section 1.2) in a way that
enhances the game-play. The people who play these games are generally not hard-
core gamers, and the games themselves are usually multi-player and turn based.
The social gaming industry has undergone, and will continueto undergo, explo-
sive growth (see Figure 1.1). For example, Facebook, one of the largest online
social networks, is currently the biggest player in the social gaming market, and
66% of its traffic is related to social games [30]. Second, MMOGs are games that
are capable of supporting a large number of players. Examples include World of
Warcraft, Call of Duty Modern Warfare 3, and Lord of the RingsOnline. Finally,
casual games are games that have (almost) no learning curve and usually have a
sort duration. Examples of services that offer such games include Pogo, Cafe,
Doof and Kongregate. It should be pointed out that these groups of games are not
separate, and games can belong to multiple groups.

The way online gaming systems can be accessed varies. Some games run on
online social networking systems, while others run on regular web-sites. Games

2

that offer more complex graphics typically require the installation of a stand-alone
application.

Most of the online gaming systems run on a traditional client/server architecture,
which has significant drawbacks. First, centralized systems introduce high costs,
especially if companies need to over-provision a large number of servers in order
to cope with a sudden increase in the number of users. Second,relying on a cen-
tralized architecture introduces a single point of failure. This means that due to,
for instance, a DDoS attack or because of a hardware issue, the system could face
significant downtime. Finally, the scalability of central systems is limited by the
capacity of a single server or cluster of servers. The centralized architecture has
also various advantages, such as less software complexity and more control over
the system since it relies on a central authority.

Since most online gaming system are run by companies, they often attempt to
generate revenue, which is often done by showing advertisements while the sys-
tem is being used, or by direct payment. Direct payment is usually achieved by
requiring that the user pays for the application that is usedto access the system,
by requiring a periodically subscription free, or by selling virtual goods within the
game. Finally, there are several systems that do not attemptto generate revenue,
but still require donations to pay maintenance and hosting costs.

1.2 Online social network systems

Especially in the last several years, the Internet has become a popular place to
interact with one another. There are many different ways in which people can col-
laborate, maintain social relationships, and share content, all supported by online
social network systems.

Before continuing further, let us provide definitions for a number of entities rela-
ted to this subject. First, a social network represents a mapof all links between the
people as they interact and create relationships, whereas an online social network
refers to a social network that is formed in an online setting. Second, online so-
cial network systems are systems that support and manage online social networks.
A type of online social network system that is particularly often mentioned in the
media are social networking sites, which are defined as “web-based services that
allow individuals to (1) construct a public or semi-public profile within a bounded
system, (2) articulate a list of other users with whom they share a connection, and
(3) view and traverse their list of connections and those made by others within the
system” [20].

Social networking sites currently enjoy tremendous popularity. Think, for ins-
tance, of Facebook and LinkedIn. But other popular online social systems also
exist. For instance, Youtube (a video sharing service), andFickr (photo sharing
service). Currently in-use systems exist mostly on centralized architectures, and
while there do exist decentralized systems such as Diaspora[4], NoseRub [11],
GNU Social [7], they have yet to again a reasonably sized userbase. For more

3

technical details regarding social networks, please referto our literature survey
[19]

Since we will be constructing an overlay network based on howfrequent gamers
play games against each other, the resulting network can be considered a social net-
work, according to the definition above. Unlike in many of theexisting systems, in
our social network system, the creation of relationships does not happen explicitly,
but implicitly by picking opponents against who you wish to play.

1.3 Peer-to-peer networks

Peer-to-peer networks are self-organizing networks consisting of interconnected
nodes which participate in the sharing of resources. Peer-to-peer networks have
no notion of clients and servers, and in their purest form, the network only exists
of equal nodes. However, equality of nodes is not a requirement for peer-to-peer
systems, and there also exist hybrid forms in which the network commonly has two
types of nodes (namely, regular and ’super’ nodes). Since peer-to-peer networks
have no servers that manage the operations within the network, nodes are requi-
red to independently perform tasks such as searching, managing connections with
other nodes, and message forwarding. Additionally, in order to maintain the ove-
rall performance of the peer-to-peer network, nodes are required to adapt to failures
that can arise in network connections with other nodes or at the nodes themselves.
This behaviour leads to a highly dynamic network topology that is always changing
as nodes enter/leave the network and connections are created/dropped. One of the
most widely used peer-to-peer networks today is the BitTorrent file-sharing plat-
form [23]. In fact, BitTorrent is so popular, that it is responsible for a considerable
portion of all internet traffic (see Figure 1.2).

Peer-to-peer networks often create an overlay network on top of the physical
network topology. Overlay networks, which decide the network organization and
location and routing algorithms, can be classified into two categories: structured
and unstructured networks. When dealing with structured peer-to-peer networks,
nodes have a fixed limit on the number of other nodes that they are allowed to
connect to. Furthermore, in structured networks there are rules that nodes are re-
quired to follow when deciding to which nodes they should connect. Examples of
structured peer-to-peer networks are Chord [35], Overnet [24], and Tribler [33].
In unstructured peer-to-peer networks, nodes have no fixed limit on the number of
connections that they establish to other nodes, nor do nodeshave rules that regulate
to which nodes connections can be made. Example of unstructured peer-to-peer
networks include Gnutella [8] and Freenet [22].

Tribler is a file-sharing application based on the BitTorrent protocol, and de-
veloped at the Delft University of Technology. Tribler attempts to improve the
BitTorrent protocol with features that were not available initially, while remaining
backwards compatible with the original protocol. Most of these features tend to
make the network more social. An example of such a feature is Tribler’s recom-

4

Figure 1.2: Estimate of overall internet usage for 2009 [27].

mendation system, which presents users with files he/she maywant to download.
Another example is the remote search feature, which enablesusers to search for
files through querying remote peers. However, most of these improvements re-
quire peers to be able to contact each other, even if they do not reside in a common
swarm. The original BitTorrent protocol does not allow this. In order to enable
peers to contact each other, even if they do not reside in a common swarm (i.e, a
group of peers sharing a file or group of files), Tribler introduces the notion of the
overlay swarm. The overlay swarm is basically a virtual swarm which encompasses
all peers that are using the Tribler software. Tribler constructs the overlay swarm
through the use of an epidemic protocol, called BuddyCast (see Section 2.2.1).
When constructing an overlay network for our own system, we utilize a mecha-
nism based on BuddyCast.

1.4 Epidemic protocols

In epidemic protocols, or gossip protocols, information isspread within a computer
network much like disease or infection spreads within a population, hence the name
epidemic protocols. Using the terminology from epidemics,a certain node in the
network can either be: infected, if it has an update (i.e., piece of information) and is
willing to spread it; susceptible, if has yet to receive a certain update; and removed
if it has a certain update, but is not willing to share it. Epidemic protocols are
simple, scalable, easy to deploy, and are very reliable evendealing with of a lot of
link failures.

Various propagation models exist, such as that of anti-entropy, a model origi-
nally proposed for replicated database maintenance. In theanti-entropy model,

5

an infected node randomly chooses another node and exchanges updates. The ex-
change of updates can take place in a number of ways. In a push approach, the
infected node sends its own updates. When using a pull approach, the infected
node receives updates. And the final approach, push-pull, isa combination of the
former two (i.e., both nodes send updates to each other). In the anti-entropy model,
nodes never become removed.

Information dissemination in our work, which is based on BuddyCast, is achie-
ved using a model very similar to the anti-entropy model withpush-pull update
exchanges. However, since we are dealing with a peer-to-peer network, a network
in which lack a complete list of all nodes it is comprised of, we cannot choose
a random node from the entire population. Therefore, we choose a node from a
sample of the population, where the sample is comprised of random nodes and
nodes that are frequently played against (see also Section 3.3.2).

1.5 Contributions

To address the issues introduced by gaming systems with a centralized architecture
(see Section 1.1), we design and implement a decentralized system that allows
users to play turn-based board games over a peer-to-peer network. We also design
and implement a separate overlay network in which gamers that frequently play
against each other cluster, promoting the creation of communities of gamers. By
focusing on the social aspect of the overlay network’s structure, we enable game-
play in a way that is similar to the games played on social networking sites. We
implement our decentralized system as an extension to the Tribler peer-to-peer file-
sharing application. As an added benefit, we hope that these new functionalities
could further expand the user-base of Tribler. In this thesis we provide answers to
the following research questions:

1. How to design and implement a protocol that enables playing turn-based
board games over a peer-to-peer network?

2. How does the protocol that we design for playing turn-based board games
perform?

In order to provide answers to these questions, we face the following technical
challenges (challenges 1-3 are related to the first researchquestion, whereas chal-
lenges 4-5 are related to the second research question):

1. How to create a suitable overlay network on the physical topology?
2. How to provide users with the ability to agree on playing a game?
3. How to provide users with the ability to play a game?
4. How to emulate a large network of game playing peers?
5. How to assess the performance of a network of game playing peers?

6

1.6 Thesis layout

The remainder of this document exists of five chapters and is organized as follows.
Chapter 2 discusses related work in the area of online gamingand also gives an
overview of existing mechanisms that could help to solve ourproblem. Chapter 3
defines the functional and non-functional requirements of Tribler-G, along with its
design and implementation. Next, Chapter 4 provides an evaluation of the Game-
Cast protocol through several experiments. Chapter 5 provides the results of the
user testing. Finally, in Chapter 6, conclusions are drawn from previous chapters
and future work is discussed.

7

8

Chapter 2

Background

In a traditional online gaming system, clients in the network send the game infor-
mation to a single server (or cluster of servers). It is not difficult to imagine that
using such a client/server architecture, the server will eventually become a bottle-
neck as the number of clients grows. Despite this potential concern, many, if not
all, of the truly popular online gaming systems today rely ona centralized architec-
ture. These systems serve millions of users each day, and require over-provisioning
in order to guarantee that the system remains working properly, even if the number
of users suddenly increases.

Decentralized solutions are believed to offer better scalability, while keeping
game hosting costs down. Unfortunately, it is also considerably more challenging.
An example of a challenge that we face is the construction of an overlay network,
which we can utilize to achieve large-scale distribution ofpeer and game informa-
tion. Tribler, a peer-to-peer file-sharing client based on the BitTorrent protocol,
already has such a overlay network in place. However, this overlay is structured in
a way that users with similar downloading tastes are more likely to be connected
to each other than users with different tastes. For the game network, it is unlikely
that this same structure is of use in disseminating game events, and therefore we
require a separate overlay network.

Additionally, we require a protocol that allows players to invite another, play
games and discuss games. Internet Chess Servers (ICSs) use asimple text-based
protocol that already suits most of our needs. While this protocol is really only
meant to be used for playing chess, its syntax can easily be adjusted to work on a
variety of other games as well.

The remainder of this chapter is organized as follows. Section 2.1 provides an
overview of various existing centralized and decentralized online gaming systems,
while Section 2.2 introduces existing mechanisms that we used in our work.

9

2.1 Related work

In this section we will discuss current online gaming systems. First, we will elabo-
rate on various popular centralized systems. Second, we will briefly discuss several
decentralized gaming systems and explain how they differ from our work.

2.1.1 Centralized gaming systems

Currently popular gaming systems are mostly using central servers. For example,
World of Warcraft [18], on of the most popular Massively Multi-player Online
Game (MMOG) today has more than 10 million subscribers [17].Another example
is Call of Duty Modern Warfare 3 [1], a First-Person Shooter (FPS) which has been
reported to have around 20 million unique online players each month [13].

However, games do not necessarily need to have complex 3D graphics in order
to attract a large audience. Think, for instance, of Farmville, a social networking
game that has almost 30 million daily users [21]. But also more traditional board
and card games such as Chess, Checkers and Poker, have a substantial user-base on
websites such as Facebook and Yahoo! Games. Additionally, with the enormous
popularity of smart phones and tablet device, Android/iOS games such as Word-
feud [15] (a word game based on Scrabble) have enjoyed tremendous popularity.

Additionally, besides the relatively recent services, there are also several central
gaming systems that have been around for more than a decade. Think, for instance,
of the Internet Chess Club (ICC) [9], the Free Internet ChessServer (FICS) [5] and
the KGS Go Server [10].

What most of these central systems have in common is that theyneed to gene-
rate revenue, which typically means users have to endure advertisements or pay
subscription fees. Furthermore, the central services introduce a single point of
failure, large game hosting costs and generally do not scalewell.

2.1.2 Decentralized gaming systems

Most of the current research into peer-to-peer gaming systems focusses on provi-
ding players with a virtual world, in which the player can move around and inter-
act with his/her environment. Examples include games such as Donnybrook [16],
a first-person shooter, and OpenTTD [31], an open source reimplementation of
the Real Time Strategy (RTS) game Transport Tycoon Deluxe. Contrary to these
systems, Tribler-G aims to provide games that are much more similar to those of
social networking sites in terms of complexity. Additionally, we focus on struc-
turing the overlay network such that gamers that frequentlyplay together cluster,
thereby implicitly creating virtual communities of gamers.

Our work provides online gaming services over the Tribler file-sharing network.
Building a gaming system on top of a file-sharing network is not new, and various
other systems exist that utilize file-sharing networks to provide gaming capabilities.
Think, for example, of PastryMMOG [26], which uses PAST, a distributed file

10

system on top of Pastry, and P2P Second Life [37], a MMOG that is build on top
of the Kad network. However, Tribler-G is, to the best of our knowledge, the first
system that provides gaming functionalities over the Tribler network.

In GameCast, the peer-to-peer protocol that Tribler-G utilizes, the creator/owner
of a game is responsible for administrative tasks such as notifying all players that
the game has started, distributing game information and ensuring that comments
are posted. To some extent, this is comparable to systems in which one or more
peers are given the task of managing a certain region of the virtual world. Examples
of such systems are PastryMMOG and MOPAR [38].

2.2 Building blocks

In this section we provide an overview of existing mechanisms that we used as
building blocks while creating our decentralized online gaming system.

2.2.1 BuddyCast

In the introductory chapter of this thesis we already brieflymentioned that Tri-
bler introduces the notion of an overlay swarm in order to enable peers to contact
each other, even if they do not reside in a common swarm. The overlay swarm is
basically a virtual swarm which encompasses all peers that are using the Tribler
software. The most notable property of the overlay swarm is that is does not use
a central tracker, unlike traditional swarms. The overlay swarm is secured through
the use public-key cryptography, in which each peer is givena public/private key-
pair. Peers on the overlay swarm are identified using their public key, which Tribler
calls a PermID (or Permanent IDentifier). Each PermID maps toa single IP address
and port number. When peers on the overlay swarm contact eachother they need
to exchange and validate their PermIDs, after which communication can start.

While peers download files from other peers, they build up a preference list. A
preference list contains all files that a peer has downloadedin the past. Utilizing
the overlay swarm, peers exchange these lists. The collection of all lists that are
gathered by a certain peer is called the preference cache of the peer. Using the
preference cache, a peer is able to calculate its similarityto other peers. Peers
with high similarity are called taste buddies. Beside exchanging preference lists,

Preference list

10 Taste buddies:
permid, ip, port,

last seen,
preference list

10 Random peers:
permid, ip, port,

last seen

Figure 2.1: The BuddyCast message format.

11

peers also exchange lists of taste buddies and random peers,in order to distribute
the peer information throughout the network. BuddyCast refers to the algorithm
that manages the exchange of preference and peer lists [32].Peers spread their
preference and peer list by sending BuddyCast messages (seeFigure 2.1) either
periodically, or in response to a received BuddyCast message. When a peer decides
to send a BuddyCast message, it needs to select a target peer.The type of the target
peer alternates between a taste buddy and a random peer. The reason for alternating
between these types of peers is to enable the discovery of peers that are even more
similar. Once a BuddyCast message has been send to a target peer, that specific
peer will not be send another message for a predefined period of time. Also, once a
peer receives a BuddyCast message from another peer, it willignore all subsequent
messages until a predefined period of time has passed.

When a peer first joins the network, it needs an initial list ofpeers in order to
start participating in the exchange of BuddyCast messages.This problem is solved
using a number of special super-peers which provide the necessary information to
newly arrived peers. These super-peers can be seen as hubs within the network,
keeping the network connected and providing a low network diameter.

Several of the features of Tribler rely on maintaining connections between taste
buddies. For instance, the recommendation feature uses thesimilarity between the
peers to recommend other downloads. Its easy to see what the idea behind this is:
if peersa andb are taste buddies, thena may also be interested in downloads of
b thata has not downloaded yet. Another feature that utilizes tastebuddies is the
remote search, in which a peer may query the databases of taste buddies in order to
find needed content.

In order to realize Tribler-G, we decided to create a separate overlay network,
which we call the game network. The game network is created using a algorithm
very similar to BuddyCast. However, we will not be distributing preference lists,
but game information. Additionally, the network will not bestructured based on
similar downloading tastes of users, but based on how frequently they play games
against each other. Finally, we will use the structure of theoverlay network in order
to find suitable opponents

2.2.2 Internet Chess Servers

A popular way to play chess online is through the use of an Internet Chess Server
(ICS). Communication between an ICS and a player is achievedthrough the use
of a text-based telnet protocol. Because of this an ICS can becontacted using a
standard telnet client (see Listing 2.1). However, most of the users use some sort
of graphical interface to contact the ICS. Examples of popular interfaces are e.g.,
xboard/Winboard, PyChess and BabasChess.

The ICS protocol enables users to invite another and subsequently play a game
of chess, and while this protocol is really only meant to be used for playing chess,
its syntax can easily be adjusted to work on a variety of othergames as well. The-
refore, we use the ICS protocol as a basis for GameCast. The advantage of using

12

0

300

600

900

1200

1500

1800

00:00 06:00 12:00 18:00 24:00

N
u

m
b

er
o

fu
se

rs
lo

g
g

ed
in

Time of day (Pacific Daylight Time)

Figure 2.2: Average number of users logged in on the Free Internet Chess Server
(FICS) during the day.

the ICS protocol syntax is that we can more easily involve theICS community in
our peer-to-peer gaming application. The ICSs have a substantial user-base. For
example, the Free Internet Chess Server (FICS) has over 300,000 registered users
and at least 900 users are logged in at any time (see Figure 2.2).

The telnet output shown in Listing 2.1 is called ”style 1” on most ICSes. This
style is mostly used by users who play chess using a telnet client. The current
default style is ”style 12”, which displays the entire game state (the board, how
much time the players have left, etc.) in a single line of text. The reason for
this change of style is that the output from ”style 12” is mucheasier to parse by
a software application then the ”style 1” output. Note that changing output style
merely ensures that the board is displayed differently, everything else remains the
same.

Frequently used ICSes

By far the largest part of the community plays on only a handful of servers (some
of which date as for back as 1995). Among the most popular are:

FICS: Free Internet Chess Server (freechess.org)Users can register for a free
account on the FICS website, or login as guest. Game statistics and ratings
are only for registered users. The description of the commands used by FICS
can be found at: http://www.freechess.org/Help/AllFiles.html

ICC: Internet Chess Club (chessclub.com)The Internet Chess Club is a paid
service and users can’t fully access it without becoming a paying member.
Information regarding the commands that ICC supports is available at: http://
www.chessclub.com/help/help-list

Chess.Net (chess.net)Chess.Net is another commercial service, and can be seen
as one of the main competitors of ICC. Information about available com-
mands can be found at: http://www.chess.net/askoweb/tutorial/index.htm

13

http://www.freechess.org/Help/AllFiles.html
http://www.chessclub.com/help/help-list
http://www.chessclub.com/help/help-list
http://www.chess.net/askoweb/tutorial/index.htm

Listing 2.1: Playing a game of chess on FICS using a telnet client
fics% seek 2 12
fics% Your seek has been posted with index 89.
(100 player(s) saw the seek.)
fics%

Melegin accepts your seek.

Creating: Melegin (993) GuestBWSK (++++) unrated blitz 2 12
{Game 521 (Melegin vs. GuestBWSK) Creating unrated blitz match.}

Game 521 (Melegin vs. GuestBWSK)

1 | R | N | B | K | Q | B | N | R | Move # : 1 (White)

|---+---+---+---+---+---+---+---|
2 | P | P | P | P | P | P | P | P |

|---+---+---+---+---+---+---+---|
3 | | | | | | | | |

|---+---+---+---+---+---+---+---|
4 | | | | | | | | | Black Clock : 2:00

|---+---+---+---+---+---+---+---|
5 | | | | | | | | | White Clock : 2:00

|---+---+---+---+---+---+---+---|
6 | | | | | | | | | Black Strength : 39

|---+---+---+---+---+---+---+---|
7 | *P| *P| *P| *P| *P| *P| *P| *P| White Strength : 39

|---+---+---+---+---+---+---+---|
8 | *R| *N| *B| *K| *Q| *B| *N| *R|

h g f e d c b a

fics%

Basic ICS commands

The ICS protocol is not standardized. However, looking at the commands available
at the different ICSes, there appears to be (almost) no difference. In case that
commands do differ, we follow the syntax described in the FICS help-files, since
FICS seems to be the largest free ICS. Below is a list of basic ICS commands,
which can be used to find an opponent and play a game (for brevity, some optional
parameters have been left out):

• seek time inc type colour start rating1-rating2
Using the seek command, users are able to post a request for a chess game
of a specific type. The seek command takes a number of arguments: inc
timemeans that each player initially getsinc minutes to play the game, and
each time they make a move they gettime additional seconds. Thetype
parameter, which can be set to either ’rated’ or ’unrated’, denotes whether
or not the result of the game should affect the ratings of the players. The
colour argument can be set to either ’black’ or ’white’, denoting the colour
with which the player executing the seek will play. The valueof the start
argument is set to either ’manual’ or ’auto’, where ’auto’ ensures that the first
player that responds will be accepted automatically, and ’manual’ allows the
player executing the seek to explicitly accept or decline a responding user.
Finally, rating1-rating2 means that only players who have a rating within
this range are allowed to respond (e.g. 1200-1300).

• matchuser type time inc colour

14

Using the match command, users can challenge a specific player to a game of
chess. The match command has several parameters similar to the seek com-
mand, with the additional requirement that a user-name mustbe specified
with theuserargument.

• play seekid/ user
The play command enables users to respond to a request postedusing the
seek or match command. The play command takes either a request number
(denoted withseekid), or a user-name (denoted withuser) as an argument.

• accept / declineresponseid
When a user executes the seek command withtypeset to ’manual’, and one
or more players respond to it using the play command, the accept command
allows the user to accept the response identified byresponseid. The decline
command works the same, except that it will decline the response.

• unseekseekid
The unseek command will cancel an outstanding request. In order to cancel
a specific request, unseek should be followed by a number identifying the
seek (seekid). If no argument is given, all requests are cancelled.

• MOVE

With this command, users can make moves when a game has started. The
command exists out of a string in coordinate notation (e.g. d2d4). Other
notations are also available, but coordinate notation seems to be the simplest.

Alice
(rating 1200)

ICS Bob
(rating 1300)

1

2

3

4

5

6 6

7

8 8

9

10 10

1: seek 10 5 rated black auto 1100-1400

2: Alice (1200) seeking 10 5 rated standard [white] (”play 50” to respond)

3: Your seek has been posted with index 50.

(102 player(s) saw the seek.)

4: play 50

5: Bob accepts your seek.

6: Creating: Bob (1300) Alice (1200) rated standard 10 5

{Game 85 (Bob vs. Alice) Creating rated standard match.}

<12> rnbqkbnr pppppppp ——– ——– ——– ——– PPPPPPPP RNBQKBNR . . .

7: d2d4

8: <12> rnbqkbnr pppppppp ——– ——– —P—- ——– PPP-PPPP RNBQKBNR . . .

9: d7d5

10:<12> rnbqkbnr ppp-pppp ——– —p—- —P—- ——– PPP-PPPP RNBQKBNR . . .

Figure 2.3: Example of the message flow when Alice and Bob playa game of chess
on FICS (with style 12 enabled).

To illustrate the use of these commands, Figure 2.3 shows an example of how
communication between two players and an ICS could go. In theexample, Alice

15

executes the seek command on the ICS, the ICS notifies Bob, andBob responds
to the seek. The commands used in this example will work on FICS and ICC
(and possibly others). The output from the ICS to the player can differ slightly
depending on which server you are using. For example, the second message in
Figure 2.3 can have arguments in different order on ICC, and ICC also mentions
the rating range from the initial seek command.

16

Chapter 3

Design and implementation of
GameCast

In the previous chapter we discussed the ICS protocol, a text-based protocol used
for interacting with ICS servers, and the BuddyCast protocol, a peer-to-peer gossi-
ping protocol. In this chapter we introduce GameCast, a system that incorporates
ideas from both protocols in order to achieve multi-player gaming functionalities
over the Tribler peer-to-peer network. GameCast allows players to explicitly invite
one another or invite any player within a certain rating. Additionally, besides the
functionalities required for playing a game, GameCast ensures that finished games
are distributed throughout the network. Players receivingthe game will be able
to review the game and attach comments. For now, GameCast will only support
turn-based board games, by which we mean that the players of the games will have
a pre-determined order in which they make their moves and both the number of
players and the frequency at which they move will be relatively small (as opposed
to Massively Multi-player Online Role-Playing Games or MMORPGs). To realize
the GameCast system, we use a mechanism similar to BuddyCastto allow peer
discovery and game distribution within the network. Furthermore, the mechanisms
used for game agreement and for playing a game are based on theidea that for each
game, its creator/owner is responsible for administrativetasks such as notifying all
players that the game has started, distributing game information and ensuring that
comments are posted.

The remainder of this chapter is organized as follows. Section 3.1 defines the
functional requirements that need to be satisfied by GameCast. In Section 3.2, we
define a number of design requirements that need to be met. Section 3.3 elabo-
rates on the design of GameCast. To some extent, Section 3.3 will also go into
implementation details, explaining why particular designdecisions are made. Fi-
nally, Section 3.4 provides a brief introduction to the graphical user interface of
Tribler-G.

17

3.1 Functional requirements

The Tribler peer-to-peer client will be extended with multi-player gaming functio-
nalities. Although, in the future, Tribler-G will have built-in support for a variety
of games, for the timing being, we will focus our efforts on online chess. The fea-
tures of the chess game should be on par with the main featuresof current online
chess games [2] [5] [12]. The following basic functionalities should be available:

Maintain a separate game network At this point we need to make a distinction
between the overlay network, that is comprised of all the users of Tribler, and
the game network, which is defined as a subset of the overlay network. For
the time being, we will let users who are running the modified Tribler client
automatically join the game network, i.e., the game networkencompasses all
the users who are running GameCast. Therefore, no functionality is required
for joining or leaving the game network.

Create a new gameAny player can create a new game at any time. There are
two possible ways to create a new game: (i) invite a friend, (ii) invite a
random player of a certain rating. In the case of inviting a specific friend,
this friend should be identified using his/her unique identifier or by selecting
a player from the high score list. Invites for players of certain ratings are to
be distributed within the game network within a distance ofh hops. Online
peers within this distance will be able to view the invite (see next point).

Besides what (type of) user to play, the player creating the game can also set
the color to play with as well as the different timing options. Our chess game
will be using Fischer-after clocks, where the timing options are the start time
for each of the players clocks and the time with which the clock of a player
is incremented when he/she makes a move.

Join a game The player has access to a list of outstanding invites (from other
players) that he/she can respond to. This includes both specific invites from
friends and from players who request to play against a playerof a certain
rating. If no open invites exists, the player should create anew game.

Play a game against another userOnce the chess game has two players, it will
start. If not enough players can be found to play the game, it is discarded.

Players are only allowed to enter valid chess moves into the program. Once
the move is entered, the program sends a message to the opponent notifying
him/her of the move. The opponent also checks the validity ofthe move to
prevent players from cheating.

Play a game against the computerEvents from games played against the com-
puter are completely localized (and are not distributed). This also means
that games played against the computer are not taken into consideration in

18

the statistics, and the outcome of the game does not affect the ratings of
players.

For most games, there is some kind of open source AI software available,
which can play that particular game. These programs, also called engines,
can therefore be used to replace a player in the game. Examples of open-
source chess engines are Crafty [28], and GNU Chess [6].

Distribute finished games Only once a game is finished, it will be distributed
throughout the game network. Peers receiving these games should store them
in their databases, along with games that they have played themselves.

Review finished gamesUsers should be able to access the game information col-
lected during the distribution process. This information includes at least: the
names of the players, the winner of the game, and the date on which the
game was played. Furthermore, users should have the abilityto step through
all the moves of the chess game.

Users of the game network should also be able to attach text messages to
a game. Newly created messages will spread through the network using the
same protocol that spreads the games themselves. To limit traffic, constraints
need to be put in place on both the total number of messages associated with
a game and the maximum size of the messages.

View statistics Users should have access to statistics related to all games that were
gathered during the distribution process. Each player should have a rating,
indicating their level of skill with the game. Ratings are tobe calculated
using information that is available in the database.

Furthermore, users should have access to a high score list showing the ra-
tings of known players within the game network. To meet this requirement,
information about previously discovered games (stored in the database) is to
be used to extrapolate this list.

In order for ratings to be more meaningful to a player (i.e. what the ratings
of the other players are), the system should display some type of distribution
graph of all known players and their ratings.

Import games from FICS Since there does not yet exist a community of users
who frequently play chess on the Tribler network, it is entirely possible
that potential players find themselves unable to find a suitable opponent on
the game network. To prevent these users from being disappointed and lea-
ving the game network, our application should be able to import additional
outstanding invites from the Free Internet Chess Server (FICS) [28]. Since
playing rated games on FICS requires players to be registered members, for
now Tribler will only support games that are not rated.

19

3.2 Non-functional requirements

In addition to the functional requirements from the previous section, a solution that
enables online gaming over the Tribler peer-to-peer network should also meet a
number of design requirements:

Flexible design The software should be designed in such a way that extending the
range of possible turn-based board games will be easy. Whileplaying online
chess involves only two players, many other games, for example monopoly,
can involve a different number of players. The solution should be designed in
such a way that no (or at least minimal) changes are necessaryto implement
a game with more than two players.

Scalability Since the number of peers on the Tribler network has the potential
the grow very large, it is important that the online gaming solution scales
well. When talking about the scalability of the solution we are most concer-
ned with the bandwidth that the gaming functionalities use.In other words,
the amount of traffic that the online gaming solution uses should grow only
moderately with the number of peers.

ResponsivenessPlaying social games over a network requires game events to be
propagated timely, which assures that the gaming experience is as fluent
as possible. Of course delays are unavoidable since sendinga message of
the network takes time, even under the best of circumstances. Furthermore,
users that utilize the gaming facilities of Tribler may alsohave a number of
downloads running. Running these downloads and maintaining the nume-
rous connections that are related to them, will further impede the responsi-
veness.

Furthermore, the responsiveness should also be scalable. This means that
playing a game over a larger network and/or with a larger amount of partici-
pants should have as little effect on the responsiveness as possible. However,
for the time being, we assume that the number of participantswill be limited.

Note that playing a simple game of chess, will not suffer too much if the
responsiveness is lacking, since making a move will usuallytake some time.
However, the design should consider that future games couldgenerate game
events more frequently.

Security Generally speaking, peers within peer-to-peer networks implement cer-
tain protocols and use these protocols towards some common goal. In such
systems, however, untrustworthy peers could try to affect the system in a
way that is undesirable. For instance, a peer in the game network could de-
cide to start distributing fake game information in order toinfluence its own
rating or the rating of someone else. In this example, a partial solution is
to attach the signatures of all involved players to the message, thereby pre-
venting anyone else from tampering with its content. Another example of

20

undesired behaviour is the possibility of a peer to start attaching spam mes-
sages to a game (using the discussion feature), which calls for some sort of
spam detection mechanism. Unfortunately, often, securityfeatures cannot
be added later. However, we consider these problems to be outside the scope
of this research assignment, and focus more on delivering a working proto-
col and the necessary features that enable to start buildingan online gaming
community.

User friendliness The user interface needs to be intuitive—users should be able
to use the software without any help or training. When the system gives a
user an error, the generated error-messages should be as clear as possible.

3.3 The GameCast protocol

GameCast enables its users to play online multi-player games in a decentralized
setting. This is achieved by exploiting a peer-to-peer network, in which peers
manage their own local game information. To ensure that eachpeer has the most
recent information, GameCast peers periodically exchangemessages containing
recent peer and game information. In addition, GameCast provides a way for peers
to invite each other and subsequently play a game.

3.3.1 Design overview

GameCast, named similar to BuddyCast and BarterCast, consists of three pro-
cesses:

Information dissemination The information dissemination process spreads the
peer and game information throughout the network.

Game agreementThe game agreement mechanism enables one peer to invite
another by sending an invitation message.

Game-play The process of multiple peers actually playing a game acrossthe net-
work.

In essence, the former process is a variation of the existingBuddyCast protocol,
whereas the latter processes are new additions. Messages related to GameCast are
passed through Triblers secure overlay, which enables high-level communication
between peers. To easily differentiate between Triblers standard messages and
those of GameCast, GameCast messages are prefixed byGC (see Table 3.1). The
remainder of this section will further elaborate on each of these three processes.

3.3.2 Information dissemination

GameCast uses a gossip protocol to disseminate the game-information across the
network. Analogous to BuddyCast, GameCast discovers peerswithin the network
and forms a overlay network. The resulting overlay network,which we call the

21

Message type Primary function
GC GOSSIP Used in the information dissemination process for

the exchange of peer and game information.
GC ALIVE Used in the information dissemination process for

keeping connections with game buddies and random
peers alive.

GC CMD Used for sending commands related to game agree-
ment and playing games.

Table 3.1: GameCast message types and their primary functions.

game network, is formed in such a way that peers that frequently play games
against each other tend to cluster. The reason for us to promote such a network
structure is based on the idea that users who frequently playagainst each other will
likely also be interested in each others games. The game network addresses the
first technical challenge from Section 1.5.

This network structure is achieved through the introduction of so-calledgame
buddies. Game buddies are basically peers that frequently play games against each
other. In order to quantify this frequency, we define the interaction factor of peeri
andj as:

min(fij , c)/c,

wherefij denotes the number of games that peeri andj have played against each
other, andc is a constant representing the maximum number of games that should
be taken into consideration. Peers that have a high interaction factor are called
game buddies.

Information is spread within the network through the exchange of GC GOSSIP

messages. When a peer decides to send aGC GOSSIPmessage, it needs to select
a target peer. The type of the target peer alternates betweena game buddy and a
random peer within game network. The reason for introducingrandom peers is
to explore new peers (and games) in the network. When choosing a game buddy
target, the peer with the highest known interaction factor is chosen, and when choo-
sing a random target, the peer is chosen at random. In either case the target peer
is chosen such that it has not been send a message for at least time intervalt. In
our current implementation we have sett to 5 minutes, since such a short interval
allows for a timely information distribution with little bandwidth usage (see also
section 4.3.3 for bandwidth usage). The peer receiving theGC GOSSIPmessage
will first check whether it has already received aGC GOSSIPmessage within time
intervalt. If this is not the case, the receiving peer will update its database with the
information found in the message, and subsequently send aGC GOSSIPmessage
back (unless it has already send a message within time interval t).

Looking at the contents of theGC GOSSIPmessage as depicted in Figure 3.1,
we see that every message contains information related to its own identification.

22

Peer info:
ip, port, name,
connectable

50 Recent games:
gameid, ownerid,

winner permid,
moves, players,
time per move,

messages

10 Game buddies:
ip, interaction
factor, permid,

oversion,
connecttime

10 Random peers:
ip, interaction
factor, permid,

oversion,
connecttime

Figure 3.1: The format of theGC GOSSIPmessages.

Furthermore, the message includes the 50 most recent games the player has created
and finished, which should be enough for most players to encompass a one year
history (assuming players create and finish about 1 game a week). Finally, the
message contains 10 game buddies and 10 random peers, which corresponds to the
lists of connected game buddies and random peers further discussed below. Once
a GC GOSSIPmessage is received, the receiving peer updates its database to reflect
the newly discovered information. Among other things, thisdatabase provides the
necessary information used when determining game buddies.

Since a considerable portion of almost any peer-to-peer network exists of uncon-
nectable peers (i.e., peers that can only be connected to if the peer itself initiates
the connection), we keep open connections with a number of game buddies and
random peers, and use only those peers to include within aGC GOSSIPmessage.
This ensures that we only distribute peers that are currently online. Connections
are kept open by periodically sending aGC ALIVE message. To keep track of all
these connections, each peer maintains several lists in itsmemory:

• Unverified connections list: The secure overlay of Tribler allows for proto-
cols such as GameCast to listen to incoming connections, which initially are
all added to the unverified connections list. However, by design the secure
overlay does not make the distinction between connections coming from e.g.
BuddyCast-only peers and peers that have GameCast running.Therefore,
connections in this list are not necessarily GameCast peers. Peers are allo-
wed to stay in this list for up to 5 minutes before they are automatically re-
moved. This list is essential in preventing non-GameCast peers from being
distributed within the game network.

• Connections list: Once a peer that is in the unverified connections list has
sent a GameCast message, we know for sure that GameCast is indeed run-
ning on the peer in question. To reflect this information, thepeer is moved
from the unverified connections list to the connections list. The connections
list is further divided into two sub-lists:

– Unconnectable peers list: A list of connected peers that do not accept
incoming connections. These peers are not distributed, butthis list it
still required to keep connections to connectable peers alive.

– Connectable peers list: A list of connected peers that accept incoming

23

connections. Currently this list can contain no more than 20peers,
and can be further divided into connected game buddies, which are the
top-10 peers with the highest interaction factor, and connected random
peers, which are the remaining peers. For the size limits of the lists we
have used the same as those of the original BuddyCast protocol, since
they have proven to be effective. Furthermore, while calculating the
interaction factor at mostc = 100 peers are taken into consideration,
meaning that we consider peers that have played more than 100games
together to be equally close friends. The peers from these lists are the
ones that are included in theGC GOSSIPmessages.

In the current GameCast implementationGC GOSSIPmessages are sent periodi-
cally every 10 seconds, which ensures that game and peer information gets disco-
vered quickly after start up. After the peer has been online for over an hour, this
is increased to 30 seconds, since at that point a most of the information discovered
will already be known.

Bootstrapping

When a Tribler client is first installed, it does not yet have an initial list of GameCast-
peers to start sendingGC GOSSIPmessages to. In order to provide new clients
with such a list, we first need to run a process called bootstrapping. Bootstrapping
works through the use of special peers in the network, calledsuperpeers. Super-
peers (usually) do not participate in the network actively,i.e., they do not take part
in the game agreement process or play games. The contact information required
to connect to the superpeers is located in a dedicated file that is included with a
Tribler installation. The process works as follows:

• A peer that needs bootstrapping reads the addresses of the superpeers from
the hard drive, and randomly picks one. The reason for the peer to run the
bootstrapping process can either be because the peer is new to the network
or because the peer has not enough contact information to participate in the
network successfully.

• The peer sets up a connection (using the secure overlay) and sends a
GC GOSSIPmessage to the superpeer. The contents of the message is the
same as with a normal message. However, the ’recent games’ field may be
left empty, because the superpeer has no need for them.

• The superpeer responds with aGC GOSSIPmessage of its own. The contents
of the message is the same as with a normal message, with the exception
that usually both the ’recent games’ and ’game buddies’ fieldwill be empty,
because a superpeer does not actually play games on the network.

24

Discussion feature

In Section 3.1 of this chapter we mentioned that we wanted peers to have a game
discussion facility. To meet this requirement, we introduce the discuss command,
the first in a range of GameCast commands shown in Table 3.2. When a peer wants
to attach a discussion message to game, it sends a discuss command to the owner
of the game. The owner of the game is defined as the peer that created the game
and send out the initial invites (see also Section 3.3.3). Next, the owner will import
the received discuss command into its database and distribute the newly received
information through the exchange of futureGC GOSSIPmessages.

Command Function
discuss When a peers wants to attach a discussion message to game, it

sends a discuss to the owner of the game. The owner is respon-
sible for spreading this information through the exchange of fu-
tureGC GOSSIPmessages.

seek Used for notifying peers of a random invite.
match Used for notifying a particular peer of a personal invite.
play Sent by a peer wanting to accept a random invite.
accept Sent as positive response to either a play or a match command.
decline Sent as negative response to either a play or a match command.
unseek Used for notifying peers that a random invite has beenclosed.
start Receipt of this command tells a player that the game hasbegun.
abort Used to offer the opponent to abort by agreement.
draw Used to offer the opponent a draw by agreement.
resign Used to resign the game. The opponent is declared the winner.
move Used by players in order to notify each other of their moves.

Table 3.2: The GameCast commands and their functions.

The GameCast commands shown in Table 3.2 are simple text-based strings, exis-
ting of the command itself, followed by a number of arguments. Table 3.3 lists the
command syntax, which is based on the ICS protocol. For the discuss command,
the number of arguments is limited to two arguments identifying the game and the
message itself and a third argument containing the contentsof the message that is
to be attached to the game. When a peers sends a command to another peer, it sends
a GC CMD message with the command-string located in the ’command’ field of the
message. The complete format of theGC CMD messages is shown in Figure 3.2. In
this figure, the owner field contains information of the owner/creator of the related
game. The hops field tells receiving peers how many hops the message needs to
be forwarded. The signature field (created using the privatekey of the sender) is
used for commands that need forwarding, and prevents users that pass the message
along from tempering with the command.

25

Command Arguments
seek time, inc, type, colour, start, minrating, maxrating, gamename,

inviteid, gameid
match user, type, time, inc, colour,gamename, inviteid, gameid
play inviteid
accept inviteid
decline inviteid
unseek inviteid
start gameid, players
abort moveno, gameid
draw moveno, gameid
resign moveno, gameid
move moveno, gameid, time taken
discuss gameid, messageid, content

Table 3.3: The GameCast command syntax (boldface indicatesthat the command
or argument is not available in ICS and italics indicates a variable name).

Owner info:
ip, port, permid

Hops Signature Command

Figure 3.2: The format of theGC CMD messages.

3.3.3 Game agreement

For players to be able to play a game against each other, they need some way to
contact each other and agree to play a game. This is done through the process of
game agreement, which addresses the second technical challenge from Section 1.5.

Each game has an owner associated with it, which identifies the peer that created
the game. The owner is responsible for finding the appropriate number of oppo-
nents that are required for the game. For instance, since a game of chess is played
by two players, the owner is obligated to create and send one invite. In order to
comply with the requirements defined in Section 3.1, we differentiate between two
different kinds of invites:

Personal invites Invites that are meant for a specific peer in the network.
Random peer invites Invites that are meant for a peer that has a rating within a

certain range.

First, lets start with the process of sending a personal invite, where one peer (the
inviter) wants to invite a specific second peer (the invitee)for a game. First, the
inviter needs to ensure that there exists a connection between the two peers, and
create one if needed. Next, the inviter sends a match command, which notifies the

26

Figure 3.3: Example in which peera sends a personal invite to peerb.

invitee of the invite. As mentioned in Table 3.3, the match command takes several
parameters, some of which also exist in the ICS protocol (seeSection 2.2.2 for an
explanation of ICS arguments). Regarding the ICS arguments, one thing that is
worth pointing out is that thetypeargument should always be set to ’rated’, since
GameCast does currently not support unrated games. Besidesthe ICS-supported
arguments, GameCast also requires a number of additional arguments needed to
identify the type of game (gamename), the game itself (gameid), and invite (invi-
teid) in question. After the invitee receives the match command,it will respond
with a accept/decline command, depending on whether or not it decides to accept
the invitation. An example of the process is depicted in Figure 3.3.

Because the invitee can be off-line when the inviter tries tosend the match com-
mand, but could come back online before the invitation has expired, we should have
some kind of mechanism that deals with the temporary unavailability of peers. The
solution is simple: when the invitee is off-line (meaning that we cannot set-up a
secure overlay connection to it), the inviter will retry every 5 minutes, until either
the message has been successfully sent or a certain time constraint has expired (15
minutes, in the current GameCast implementation). This same method is applied
to any command that is sent.

Second, we discuss the process of sending random peer invites. Initially, we
thought about spreading random peer invites by appending them to all outgoing
GC GOSSIP messages. However, remember that when we previously discussed
information dissemination, it was mentioned that sending consecutiveGC GOSSIP

messages to the same peer should be at least 4 hours apart (to prevent peers from
sending the same message over and over again). Especially for smaller networks,
this can cause periods of time in which are will not be any outgoing GC GOSSIP

messages because everybody already received one recently.This would mean that
the invite will not be distributed in a timely fashion.

To avoid such issues, a different mechanism has been createdfor sending random
peer invites. Consider a situation where a peer wants to invite a random peer of a
certain rating for a game of chess. First, the inviter sends aseek command to all
connected game buddies and random peers. The seek command includes many
of the same parameters as the match command that we previously discussed (see
Table 3.3). Arguments that are worth mentioning are theuser argument which

27

Figure 3.4: Example of the commands sent when peerb creates a random invite.
Peersa andg respond to the invite, and the response fromg is accepted.

denotes the permID of the invitee, and thestart argument which should always be
set to ’manual’. The peers receiving the seek command will forward the message
to their connected game buddies and random peers. How many times the command
is forwarded depends on the hops field of the message, which isdecremented each
time the message is forwarded. The forwarding process stopswhen the counter
runs out. The default start value is currentlyhops= 2, which ensures that several
hundred peers can be reached. Next, the peers that decide to accept the invitation
will respond to the invite by sending a play command back to the inviter. When the
inviter receives the first play command, it accepts the invite, and notifies the peer
by sending back an accept command. At this point the inviter declines all further
play commands related to the particular invite by sending back decline commands.
Now that the invite is no longer valid, the peers in the network need to be notified
to avoid inconveniencing users with trying to respond to invites that are no longer
valid. To this end the inviter sends a unseek command in the same way that the
seek command was send. In case that no peer responds to the invite within a certain
time constraint (currently set to 15 minutes), the invitation is automatically marked
invalid. An example of the process is depicted in Figure 3.4.

3.3.4 Game-play

Once the game agreement process has been successfully completed, the owner
of the game will have collected a list of players that will be playing the game.
Next, we need to address the third technical challenge from Section 1.5, which is
providing users with the ability to play a game. To this end, the owner first sends a
start command to all other players. The start command comes with a complete list
of players involved in the game, and only after a peer receives this command will it
be aware against which players it will be playing. Each player that receives a start

28

command will now assume that the game has officially started and marks the time.
At this point, the players establish connections between each other. We assume

that all players will be constantly online for the duration of the game. Since the
game has started, it is time for the players to start making moves. At the start
of this chapter it was mentioned that GameCast supports onlygames that have a
predetermined order in which players make their moves. For example, in the case
that we are dealing with a game of chess, white will make the first move, black
the second, etc. This means that, since the colour of the players has already been
established during the game agreement process, each playeris now independently
able to determine when it is time to make its own move.

When a player makes a move, it sends a move command to all otherplayers of
the game. When a new move command arrives, the receiving peerchecks whether
processing the command should be postponed (see the sectionbelow on message
ordering). Furthermore, the receiver also checks the validity of the move and if the
sender of the command is indeed next to move. Finally, the receiver checks whether
the clock of the sender has run out (see the section below on game clocks). If this
is the case, the move command will be ignored and the receiverstops participating
in the game. If all verifications are successful the peer imports the received move
command into its database.

A game is finished once a closing move (i.e., a move after whichthe game will
be finished) has been detected. To this end, each player has knowledge of the rules
of the game. Once a new move is received, it uses these rules todetermine whether
or not the game is finished. If this is indeed the case, it stopsparticipating in the
game, notifies the user, and in case the receiving peer is alsothe owner, it will start
distributing the game using theGC GOSSIPmessages discussed previously.

As mentioned in Table 3.3, the first argument of the start command is used to
identify the game that the command relates to. Furthermore,the second argument
contains a list of all players within the game. Turning our attention to the parame-
ters of the move command, we notice that contrary to other GameCast commands,
the syntax of the move does not start with the name of the command, but with the
move itself in a notation specific to the kind game that is being played (e.g., for
chess a move command could be ’d2d4 20 1’). The second entry ofthe command
contains a number used to identify the game, followed by the move number (see
also the section below on message ordering).

Message ordering

So far, we have not been concerned about the order in which messages arrive. This
is due to the fact that the secure overlay of Tribler utilizesTCP connections, which
ensure that messages between each pair of peers arrive in thesame order in which
they were send.

However, in these case that we are dealing with a game with more than two
players, it is possible that move commands are received in a different order. In
order cope with this possibility, each move command has a move number attached

29

to it (movenoin Table 3.3). This move number denotes how many moves have
already been made, including the current move (somoveno= 1 for the first move,
moveno= 2 for the second, etc.). Since it is also possible that a peer receives a start
command out of order, we implicitly assign a move number to the start command
with a value of 0.

Now that, for each game, we have numbered the commands in which we are
expecting to receive them, we can simply buffer unexpected move numbers until
the time that they are ready to be processed. The size of this buffer will be limited to
the number of players within the game, since eventually the game will be blocked
by the peer that owns the buffer.

Regarding TCP connections of the secure overlay, we should also note that in
the event that a connection gets dropped after a message is sent, but before it is
received by the target peer (depending on the network latency), the message will
be lost. However, we assume that these events will be rare, and for now simply
make the message handling functions deal with them (e.g., a game could time-out
due to a lost move command).

Game clocks

Many competitive games such as chess, Go, and Scrabble utilize game clocks in
order to keep track of the total time that each player has taken so far. Each player
has its own clock, and the clock of a player is only running when it is his/her turn
to make a move. As soon as a move has been made, that clock will be paused
and the clock of the opponent will resume. Several differenttypes of games clocks
exists, for instance Fischer-after clocks, Fischer-before clocks, hourglass clocks,
and simple delay clocks.

Like the Free Internet Chess Server (FICS), GameCast uses Fischer-after clocks
in order to keep track of time. Fischer-after clocks count down from a specified
number of minutes, and after each move a player makes a specified amount of time
is added to his/her clock. Furthermore, like on FICS, the game clocks of each of
the players will not get incremented after the first move and the clocks will only
start running after both players have made their first moves.

In GameCast, the Fischer-after clock takes two parameters,namely the start time
in minutes to which the clock of each player gets set, and the time in seconds with
which the clock of a player is incremented when a move is made (timeand inc in
Table 3.3). By recording the time at which the various move commands related
to a game were received, each peer independently keeps trackof the game clocks.
Move commands received after the clock of a player has run outare ignored.

The difference between the time at which a player makes a moveand the moment
the other player(s) receive a move (i.e., latency) can result in the game clock not
being properly synchronized. To prevent this, the GameCastprotocol includes the
time taken for the move in question. Next, players receivingthe move command
will calculate the difference between the time taken according to the sender, and
compare it to the time taken from the receivers perspective.Next, receiving peers

30

will correct the opponents clock with the value that was previously calculated.
To limit malicious use, to maximum allowed correction is setto 1 second. We
have added this mechanism after the first round of user testing (see Chapter 5, in
particular Section 5.2.2)

Special commands

Until now, we only discussed making normal moves, but there are also a number of
special game-play related commands: abort, draw, and resign (see also Tables 3.2
and 3.3). Using these commands player may choose to end the game without
making a closing move.

The resign command allows a player to resign the game, after which the op-
ponent will be declared the winner. The resign command worksmuch like a regu-
lar move command, with the exception the a player does not have to wait his/her
turn before executing the command. The draw command, however, requires that all
players agree that the game is to be drawn. In order to reach anagreement, Game-
Cast requires that all players send an draw command with the samemoveno, after
which the game is considered drawn. The abort command works just like the draw
command, with the exception that if any player has yet to makea single move, the
game can be aborted by any of the players without reaching an agreement.

Game ratings

Currently GameCast supports the Glicko [25] rating system,which is a system for
rating players of a two-person game. The reason for adoptingthe Glicko system is
partly due to that fact that the FICS uses the same system, andtherefore gamers that
also play on FICS will be more comfortable with understanding the rating system.

In the Glicko system, each player has a rating and a rating deviation (RD). The
RD of a player is used to quantify to which extend the rating ofthe player should
be trusted. In case a player has a high RD, the player may not have competed in
many games, while a low RD indicates that the player competesfrequently.

The rating of a player can only change as a result of a completed game. How
much a rating changes depend on both the rating and RD of the player itself, as
well as that of the opponent. The rating of a player with a highRD will change
more than a player with a low RD. Furthermore, over time, whena player builds up
a more established rating (and thus a higher RD), additionalwin/losses will have a
less substantial affect on his/her rating. Besides the RD ofthe player itself, the RD
of the opponent is also taken into consideration, although to a smaller extent: when
a opponent has a high RD, the change of the rating of the playerwill be smaller
than it would be if the opponent had a low RD.

The RD of a player can change both as a result of a completed game and also the
amount of time that passes when the player is not playing. Competing in games
will always increase the RD of a player, while not competing will always decrease
the RD of a player.

31

Figure 3.5: Screenshot of the Tribler-G main window while viewing GameCast
player statistics.

When calculating ratings using Glicko, a collection of games that were played
within a ”rating period” are treated as if they have occurredsimultaneously. This
length of rating period can be set to anything, but we use a rating period of just one
minute. This is due to the fact that the FICS uses the same value, and we would
like our rating system to be as close to theirs as possible. Note that in order to know
which games have occurred in which rating period, we need to know the time at
which games are played. Therefore, we included the age of a game when sending
GC GOSSIPmessages.

There is currently one problem with our rating system that isworth mentioning.
The problem occurs when a player joins the game network for the first time, or has
been off-line for a long period of time. When this happens, the player in question
will lack recent game information, and may therefore not have a full history of each
gamer (remember that our gossip algorithm only distributesthe 50 most recent
games of a player). This leads to different ratings for certain players.

3.4 The Tribler-G graphical user interface

In the previous section we elaborated on the GameCast protocol, which is essen-
tially the part of the program that works in the background. Additionally, we also
need a graphical user interface (GUI) that enables the user to respond to invites,
send invites, make game moves, etc. To meet this demand, we have extended the
current Tribler GUI with features required to control GameCast. This section will

32

Figure 3.6: Screenshot of Tribler-G while displaying available invites.

briefly discuss the GameCast GUI, and give an overview of the features it offers.
How users asses this GUI is discussed in Chapter 5.

Figure 3.5 shows a screenshot of the extended Tribler GUI. The top bar of the
screen allows users to go through the different panels within Tribler. This bar is
included in any standard Tribler installation, and the GameCast extension merely
adds an additionalGamesbutton to the bar. When a user clicks theGamesbut-
ton, the GameCast GUI is displayed, which encompasses the bottom two panels
displayed in Figure 3.5. The left panel presents an overviewof the currently im-
plemented games (to date, the only game available is chess).The right panel allows
users to play the game that is selected in the left panel.

In the bottom right panel, there are the following tabs for a chess game:Player
Statistics, Online Chess, Find Opponents, vs Computer, andDiscuss Games. The
Player Statisticstab, selected in Figure 3.5, enables the user to access statistics
related to past games. These statistics do not only show the rating of the current
user and how many games were won/lost, but also give a more global picture of
ratings of other known users in the form of a histogram. In addition, the user can
use theHighscoresbutton to switch between the histogram and a list of the 25 best
players.

TheFind Opponentstab allows the user to create and accept invites. The list in
Figure 3.6 shows the invites that a user can respond to. By default, invites in this
list are collected from GameCast only. However, by checkingthe ”Import unrated
challenges from FICS” option, available invites from the FICS are shown as well.
Note that currently only unrated invites are supported. This is due to the fact that

33

Figure 3.7: Screenshot of Tribler-G while playing an onlinegame of chess.

FICS requires users to be a registered member of FICS in orderto play rated games.
In the current implementation, however, users are automatically logged in as guest.
New GameCast invites can be created by clicking the ”Create anew game” button
shown below the list of invites. Creating new FICS invites isnot supported at this
time.

Once an opponent has been found, the user should select theOnline Chesstab,
where he/she is presented with a list of all current active games. The games in this
list can be resumed by double-clicking, at which point the user arrives at a screen
similar to Figure 3.7.

Thevs Computertab allows the user to play a game against the computer using
the Crafty chess-engine. Games played against the computerare not saved and
have no time limit. Furthermore, since our GameCast-enabled Tribler client is
more geared towards online gameplay, options like setting which colour to play
with and which level of difficulty the chess-engine should play with are also not
available.

Finally, theDiscuss Gamestab allows users to discuss finished games. When
opening the tab, the user is presented with a list of all knowngames (that have
been gathered during the information dissemination process). Since the list can
grow rather large, there is also a search option which allowsthe user to display
only games related to a particular player. Double-clickingan entry from the list
of games, allows access to the review panel, in which a user can visually browse
through all the moves that have been made during the game. Furthermore, the user
is provided the opportunity to share comments/insights pertaining to the game, as

34

well as read messages from fellow players. Currently, the GUI does not allow the
user to attach a message to another message (i.e., nesting),but such functionality
could be added relatively easily.

35

36

Chapter 4

Evaluation of GameCast

After having discussed the design and implementation of GameCast in the pre-
vious chapter, in this chapter we will evaluate its performance. To this end we have
created GameTest, an emulation environment that allows a large network of Game-
Cast peers to be emulated by starting and stopping Tribler-Ginstances. During the
emulation of the GameCast network, GameTest will gather information related to
a number of important statistics.

Section 4.1 describes the hardware configuration of the DAS-4 supercomputer
on which we performed our emulation. We elaborate on the GameTest emulation
environment in Section 4.2. Next, in Section 4.3, we emulatea network of Game-
Cast peers and evaluate the performance of the system.

4.1 The DAS-4

The experimental results that are presented in this chapterwere acquired using
the fourth generation Distributed ASCI Supercomputer or DAS-4 [3]. DAS-4 is
a six-cluster distributed system, of which the clusters arelocated at the following
institutes/organizations: VU University (74 nodes), Leiden University (16 nodes),
University of Amsterdam (16 nodes), Delft University of Technology (32 nodes),
the MultimediaN Consortium (36 nodes), and the NetherlandsInstitute for Radio
Astronomy (23 nodes). Each cluster has one head node, which is used as a file-
server, and the remaining nodes are computation nodes.

The DAS-4 clusters communicate with each other through the use of dedicated
10 Gbps light-paths. Furthermore, each cluster has a 1 Gbps connection to the
Internet through its local university. Within each cluster, the nodes are connected
locally through 1 Gbps Ethernet for the normal nodes, and 10 Gbps Ethernet for
the head node.

DAS-4 runs the CentOS Linux operating system. The nodes of each of the clus-
ters have the following or better configuration: a dual quad-core 2.4 GHz processor,
24 GB memory, 1 TB of local storage, and 18 TB of storage made available by the
head node.

37

4.2 Emulation environment

In this section we present GameTest, a system used to emulatea network of game-
playing peers on the DAS-4 supercomputer, thereby addressing the fourth technical
challenge from Section 1.5. The emulation is made possible by running Tribler-G
instances on nodes of the DAS-4. In order to control what is happening on the
emulated network, GameTest requires an input scenario describing which peers
join/leave the network. GameTest processes the input scenario one line at a time,
and subsequently creates or stops Tribler-G instances. Howpeers behave during
the time that they are online is decided based on uniform random probabilities.

GameTest should be started using the Sun Grid Engine (SGE), the current node
reservation system for DAS-4. SGE enables the reservation of a specific number of
nodes for the duration of a program run. While SGE comes with all the necessary
commands needed to perform node reservation, GameTest currently relies on Prun,
an alternative user interface for SGE. We decided in favour of Prun because it is
generally much easier to use.

Crowded [34] is an emulation environment very similar in architecture to Ga-
meTest. Crowded has been developed to evaluate a swarm discovery protocol on
DAS-2. Much like GameTest, the system works by starting and stopping Tribler
instances on nodes of the DAS-2. Crowded differentiates itself from GameTest by
the input data it requires and the statistics it collects during the emulation.

Despite the design similarities between GameTest and Crowded, we decided to
create GameTest from scratch, because we estimate that the overlap between the
two systems is only about 250 lines of code. Based on this estimate, we believe
that adapting Crowded to fit our needs would have taken as muchtime as creating
the system from scratch. Additionally, creating GameTest from scratch prevents
any issues that might have occurred because of unavailable or outdated software
dependencies.

4.2.1 Architecture of GameTest

Figure 4.1 shows the architecture of the GameTest emulationenvironment, which
consists out of a singlemanagerprocess and one or moreworker processes. The
manager reads an input scenario file from disk, and subsequently forwards the
commands listed in the input scenario to the appropriate worker using XML-RPC
(XML Remote Procedure Calls). The workers take these commands and send them
to the targeted Tribler-G instance, which will execute the command. The workers
are able to communicate with the Tribler-G instances on the same node using pipes.
When starting the system, one of the nodes is chosen as the master node, which
runs both the manager and the worker, and the remaining nodesare slave nodes,
which only run the worker.

On which node a particular Tribler-G instance should run is decided by the ma-
nager process and is completely transparent to the user. When the GameTest ma-
nager process encounters a command to start a new peer, it forwards the command

38

Master Node

GameTest Worker

peer
13

peer
50

peer
11

GameTest Manager

peer
64

peer
05

peer
21

Slave Node

GameTest Worker

peer
01

peer
03

peer
06

Slave Node

GameTest Worker

peer
14

peer
08

Slave Node

GameTest Worker

Input
Scenario

Figure 4.1: The architecture of the GameTest testing environment used on the
DAS-4 nodes, with a number of Tribler-G instances running.

to the worker process that has the fewest Tribler-G instances running. The worker
process receiving the command will create a new Tribler-G instance, and subse-
quently signal the manager that the instance has started. Once the manager process
has received this signal it will remember on which node that particular instance
is running. This ensures that the load is distributed equally amongst the available
slave nodes.

4.2.2 Input scenario

Which peers join or leave the emulated network at what time isdescribed in the in-
put scenario. The input scenario is stored as a text file with anumber of commands
that will be executed (for wait commands) / forwarded (for other commands) se-
quentially and in the order in which they are specified in the file by the GameTest
manager. Listing 4.1 shows an example of what an input scenario could look like.

Currently, the following three input scenario commands areavailable:

• shell c, p: This command is used to execute shell commandc on the
slave node that holds Tribler-G instancep. We only use this command for
monitoring system statistics (e.g., CPU load monitoring).

39

• exec c, p: This command tells the Tribler-G instancep to execute the com-
mandc (see below for a list of available commands).

• wait s: Issuing the wait command will cause the GameTest manager to
pause execution of the input scenario for the duration ofs seconds.

The exec command explained above currently implements the following com-
mands:

• start i: This command will ensure that a new Tribler-G instance with
namep is started on one of the nodes. The name should be a unique string,
since it is used in future commands to identify the instance.Thei parameter
denotes the maximum number of simultaneous games that the peer is allo-
wed to participate in (see the next section). Once the command is executed,
a working directory is created named after the instance it belongs to. The
working directory is used to store various state information, such as settings
and database files. If a working directory already exists, the state information
that it contains will be used to create the Tribler-G instance.

• starts: This command is the same as the previous command, with the ex-
ception that the new Tribler-G instance will be started in superpeer mode (see
the previous chapter for more information on superpeers). The superpeer
mode does not support playing games, and therefore this command lacks
additional arguments.

• stop: Once an instance with namep is started using the start command,
it can be stopped at any time using the stop command. When a Tribler-G
instance is stopped, the GameTest manager process will cache the particular
slot (the hostname of the node and TCP port number) that the instance held.
In case of a future re-start of the same Tribler-G instance, the GameTest
manager will attempt to assign the instance the same slot that it held before.
However, there are no hard guarantees that the instance willreceive the same
slot.

exec starts peer1
exec start 2 peer2
wait 1
exec start 2 peer3
wait 1
exec pause peer2
exec start 1 peer4
wait 298
exec stop peer4
exec resume peer2
wait 25
exec stop peer2
exec stop peer3
exec stop peer1

Listing 4.1: Example input scenario

40

4.2.3 Peer behaviour

The input scenario discussed in the previous section tells the emulation environ-
ment when and for how long a peer should be online, but it does not describe how
a peer should behave during that time. Instead, the behaviour of peers is determined
by the peers themselves during runtime, based on random probabilities. Currently,
the only behaviour related argument that can be passed to a peer is the maximum
number of games a peer is allowed to play simultaneously (seethe start command
from the previous section).

Peer behaviour is modelled as follows. We assume that actions are executed
in bursts. The actions within each burst consist of a wait period that represents
the time that a user needs to take a certain action, followed by the execution of
the command. Between bursts, there are larger wait periods,representing the user
leaving the application and doing some other work. In order to avoid too many
games from timing out because of this longer wait period, games are played within
a single burst.

The code that governs the behaviour of a peer consists of a single continuous
loop that does the following. First, it selects what type of task is to be executed.
Next, based on the type of task selected earlier, the code decides on the time to
wait, and waits for the selected amount of time. Finally, thepeer decides on the
actual task and executes it (see Figure 4.2).

1: function EMULATEPEER

2: while Truedo
3: type← selectTaskType()
4: time← selectTaskTime(type)
5: sleep(time)
6: task ← selectTask(type)
7: task()
8: end while
9: end function

Figure 4.2: The function of defining peer behaviour.

The next obvious question is how do we select what type of taskthat should
be executed. This decision is made based on pre-determined probabilities. The
pseudo-code listed in Figure 4.3 demonstrates how the exactprocess works. In the
pseudo-code the variablesGO, GC , andIO represent the list of open games (i.e.,
unfinished games that the peer is currently involved in), closed games (i.e., finished
games), and open invites (i.e., invites from other peers that the peer is eligible to
respond to) respectively. These lists are not modified in thelisted code, and are
maintained by code outside this function. The constantsPD, PN , PM , PP , andPS

represent the probabilities that are used to decide on the next task type. Note that,
depending on the values ofGO, GC , andIO, we are mostly dealing with relative
probabilities. Furthermore,Gmax denotes the maximum number of simultaneous

41

1: function SELECTTASKTYPE

2: type← noops ⊲ the noops task acts as a short no-operation
3: if |GC | > 0 andrandom() < PD then
4: type← discuss
5: else if|GO| = 0 andrandom() < PN then
6: type← noopb ⊲ the noopb task acts as a long no-operation
7: else if|GO| > 0 andrandom() < PM then
8: type← move
9: else if|GO| < Gmax then

10: if |IO| > 0 andrandom() < PP then
11: type← play/accept
12: else
13: if random () < PS then
14: type← seek
15: else
16: type← match
17: end if
18: end if
19: end if
20: return type
21: end function

Figure 4.3: The function of selecting which type of task is tobe executed next.

games that can be played by the peer in question (this value isset by the peer’s start
command listed in the input scenario). Table 4.1 shows miscellaneous functions
used in the pseudo-code listings. Also, line 11 mentions thetask type ’play/accept’,
which denotes a task that either responds to a seek with a play, or to a match with
an accept (see also the previous chapter). Finally, notice that the code in Figure 4.3
does not cover the entire range of all GameCast commands. This is due to the fact
we reckon the resign, draw, and abort commands among possible moves. Also, the
decline command is missing, because this command can currently not be explicitly
sent using the Tribler-G user-interface.

After having determined the type of task that is to be executed, we need to decide
on the actual task and the interval during which to wait priorto execution. As
shown in Figure 4.2, theselectTaskTime is used to determine the wait time.
TheselectTaskTimeworks by returning a uniform randomly selected integer
in a range depending on the type of task that is to be executed next. Once we have
waited for the proper amount of time, we need to decide on the actual task. In the
pseudo-code listed in Figure 4.4, the task is determined by randomly selecting an
invite/game from the listsGO, GC , andIO.

In the experiments presented in Section 4.3, we have used thevalues for the
parameters listed in Table 4.2. The first two parameters listed for each task type
represent the minimum and maximum time that we estimate the task should take.

42

1: function SELECTTASK(type)
2: if type == movethen
3: game← randomChoice(GO)
4: move← decideNextMove(game) ⊲ based on pre-defined games
5: task ← createTask(type, game, move)
6: else iftype == play/acceptthen
7: invite← randomChoice(IO)
8: task ← createTask(type, invite)
9: else iftype == seekthen

10: invite← randomly generate an invite
11: task ← createTask(type, invite)
12: else iftype == matchthen
13: invite← randomly generate an invite
14: task ← createTask(type, invite)
15: else iftype == discussthen
16: game← randomChoice(GC)
17: message← randomly generate a message
18: task ← createTask(type, message)
19: else iftype == noopthen
20: task ← createTask(type)
21: end if
22: return task
23: end function

Figure 4.4: The function for selecting the next task.

These values correspond to the intervals from which theselectTaskTime func-
tion selects its return-values. For instance, we estimate that attaching a discussion
command to a game should take betweenTD,min = 60 andTD,max = 180 se-
conds. This time denotes the time that it takes for a user to select a specific game,
open up the review panel, type in a message, and press send. This idea also applies
to the remaining tasks. Thenoops andnoopb are different from the other tasks
in that they do not actually execute anything. Instead,noopb represents the time
between bursts, whilenoops represent a short period of inactivity within a bursts.
Finally, unless otherwise specified, we have setGmax = 1, meaning that emula-
ted peers can only play one game simultaneously (like on the Free Internet Chess
Server).

Unfortunately, we lack actual data to base these values on, but we believe to have
chosen reasonable values, based on previous works in human-computer interaction
([29], [36]). The same problem arises when determining the probabilities for each
of the task types. Therefore, further research into this problem is required.

43

Function Description
random() Return a uniform randomly selected floating point number

in the range[0.0, 1.0).
randomChoice(L) Return a uniform randomly element from the non-empty

list L.
validMoves(G) Return a lists of a valid chess games that can be made for

gameG.
createTask(c, . . .) Return a task based on the command typec and any addi-

tional parameters.

Table 4.1: Functions used while determining peer behaviour.

Task type Parameters
noops TO,min = 20 TO,max = 60
noopb TN,min = 300 TN,max = 600 PN = 0.20
discuss TD,min = 60 TD,max = 180 PD = 0.01
move TM,min= 1 TM,max= 10 PM = 0.99
play/accept TP,min = 5 TP,max = 30 PP = 0.75
seek TS,min = 20 TS,max = 60 PS = 0.75
match TA,min = 20 TA,max = 60

Table 4.2: The parameters and the values used during the experiments.

4.2.4 Logging features

In order to determine what is happening on the emulated network, the GameTest
emulation environment produces a number of log files. After the emulation ends,
these files are analysed by a post-processing script, which provides the results pre-
sented in Section 4.3.

There are currently two log files created for each Tribler-G instance. First, the
GameCast log, which is primarily used to log at what times GameCast command
messages are sent or received. The GameCast log is stored is afile called ’game-
cast.log’, which can be found in the working directory of theTribler-G instance.
Listing 4.2 shows an example of (part of) a GameCast log. The first column re-
presents the time in seconds since epoch (on Linux systems epoch is January 1st
1970 at 0:00). We choose this time representation because itwill be easier for the
post-processing script to process. The second column denotes what type of event
we are dealing with. All possible types of events and their description can be found
in Table 4.3. The third column shows the remote peer that is involved in the event
(if any). And finally, the fourth column lists any values thatare important for de-
bugging and analysis. Note that the final column has a particular format, namely
a variable name followed by an equality sign and a value, and delimited by a se-
micolon. This format provides expressability and extensibility, but makes parsing
more complex. However, we believe that the increase in ease of post-processing is

44

worth the additional complexity.

Listing 4.2: Example GameCast log-file.
. . .
1315330672.47 DBSTATS gc members = 1 ; uptime = 0 ; . . .
1315330707.84 RECVMSG Rfrx76KL0z (10.141.0.14:6000) msgtype = GCCMD (seek) ; payload = . . .
1315330707.86 SENDMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCCMD (seek) ; payload = . . .
1315330707.86 SENDMSG ZUSCsuPXtr (10.141.0.10:6000) msgtype = GCCMD (seek) ; payload = . . .
1315330707.87 RECVMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCCMD (seek) ; payload = . . .
1315330707.87 RECVMSG ZUSCsuPXtr (10.141.0.10:6000) msgtype = GCCMD (seek) ; payload = . . .
1315330715.48 SENDMSG Rfrx76KL0z (10.141.0.14:6000) msgtype = GCCMD (seek) ; payload = . . .
1315330715.49 DBSTATS gc members = 3 ; uptime = 43 ; . . .
1315330715.49 SENDMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCCMD (seek) ; payload = . . .
1315330715.50 SENDMSG ZUSCsuPXtr (10.141.0.10:6000) msgtype = GCCMD (seek) ; payload = . . .
1315330732.84 RECVMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCCMD (seek) ; payload = . . .
1315330732.85 SENDMSG Rfrx76KL0z (10.141.0.14:6000) msgtype = GCCMD (seek) ; payload = . . .
. . .

Event type Description
SEND MSG Either a GameCast command or a GameCast gossip mes-

sage has been sent.
RECV MSG Either a GameCast command or a GameCast gossip mes-

sage has been received.
POSTPONE1 A GameCast move command has been received, but is not

yet ready to be processed.
GAMEDONE1 A GameCast game has just been marked as finished due to

an abort, resign, draw or closing move.
CLOCK COR1 An opponent’s clock has just been corrected by the speci-

fied amount of time.
DB STATS1 Periodic executed event that lists several database statistics.
CONN TRY2 A connection is being established.
CONN VER2 A remote peer has been verified to be a GameCast peer.
CONN ADD2 A connection to a remote peer has just been opened.
CONN DEL2 A connection to a remote peer has just been closed.
GC STATE2 Periodic executed event that lists several gossip statistics.

Table 4.3: Possible event types shown by the GameCast log-files.

The second log file that GameCast produces is related to the gossiping protocol,
and gives an overview of the peers that are connected and whenmessages are sent
or received. The GameCast gossip log is called ’gamecastgossip.log’, and can also
be found in the working directory. An example of a part of a GameCast gossip log
is shown in Listing 4.3.

1Only shown in the GameCast log.
2Only shown in the GameCast gossip log.

45

Listing 4.3: Example GameCast gossip log-file.
. . .
1315330685.43 GCSTATE Round = 2 ; nBr = 1 ; nBs = 1 ; nCc = 1 . . .
1315330685.44 CONNTRY Rfrx76KL0z (10.141.0.14:6000)
1315330685.49 CONNADD Rfrx76KL0z (10.141.0.14:6000)
1315330685.50 SENDMSG Rfrx76KL0z (10.141.0.14:6000) msgtype = GCGOSSIP (act ive) ; payload . . .
1315330685.56 CONNVER Rfrx76KL0z (10.141.0.14:6000)
1315330685.57 RECVMSG Rfrx76KL0z (10.141.0.14:6000) msgtype = GCGOSSIP (act ive) ; payload . . .
1315330695.43 GCSTATE Round = 3 ; nBr = 2 ; nBs = 2 ; nCc = 0 . . .
1315330700.83 CONNADD br6zkoxA7P (10.141.0.10:6002)
1315330700.87 CONNVER br6zkoxA7P (10.141.0.10:6002)
1315330700.87 RECVMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCGOSSIP (passive) ; payload . . .
1315330700.89 SENDMSG br6zkoxA7P (10.141.0.10:6002) msgtype = GCGOSSIP (passive) ; payload . . .
. . .

4.3 GameCast evaluation

Using the GameTest emulation environment discussed earlier, we have performed
an experiment designed to evaluate the GameCast protocol. During the experiment,
7,618 unique peers have connected to the emulated network over time, while the
maximum size of the network was 446 concurrent peers. The experiment was
conducted using 20 DAS-4 nodes. Using less than 20 nodes resulted in higher
message transmission times, due to increased system load.

4.3.1 Performance metrics

In order to asses how GameCast performs (the fifth challenge from Section 1.5),
we monitor twelve metrics, which can be categorized as follows: information dis-
semination metrics, game agreement metrics, game-play metrics, and bandwidth
usage metrics.

Information dissemination metrics

Metrics 1A and 1B: The knowledge of peers about each peer (A) or game (B) that
was added to the network sincethe start of the emulation.
These two metrics quantify the performance of the information dissemination pro-
cess in terms of spreading all past game/peer information. To obtain metric 1A,
for each online peer, we divide the number of gaming peers that are known at a
particular time by the number of gaming peers that are in existence (both off-line
and online). To obtain metric 1B, for each online peer, we divide the number of
games that are known at a particular time by the total number of games in exis-
tence. Finally, the results from all peers are averaged.

Metrics 2A and 2B: The knowledge of peers about each peer (A) or game (B)
that was added to the network sincejoining the system.
These metrics quantify the performance of the information dissemination process
in terms of spreading recent game/peer information. To obtain metric 2A, for each
online peer, we divide the number of gaming peers in its database that are no older

46

than the peer itself by the number of gaming peers that were added to the network
since the peer joined the network. To obtain metric 2B, for each online peer, we
divide the number of finished games in its database that are noolder than the peer
itself by the total number of games that were finished since the peer joined the net-
work. Finally, the results from all peers are averaged.

Metrics 3A and 3B: The number of peers that are aware, over short time inter-
vals, of the finished games or active peers during each interval.
We would like to know how fast game information is spread through the network.
To capture this characteristic, we will keep track of the number of peers (off-line
and on-line) that are aware of a particular game over time (metric 3A). Additio-
nally, we will do the same for peer information, by keeping track of the number of
peers that are aware of a certain other peer (metric 3B).

Game agreement metrics

Metrics 4 and 5: The time it takes for a random peer invite to spread throughout
the network and how many peers are covered.
We would like to know how long it takes for a random peer inviteto travel the
distance of two hops, measured from the time of sending, until the time of reaching
all nodes within 2 hops (metric 4). Furthermore, we would like to know how many
peers the invite reaches (metric 5).

Game-play metrics

Metric 6: The time that it takes to set up a game.
This metric measures the time it takes to set up a game, starting from the point that
the final invitee responds to a invite, until the point that all players of a game have
received a start command for the game.

Metric 7: The time that peers need to add to their clocks in order to remain syn-
chronized.
This metric measures how much each peer needs to correct the clocks of its oppo-
nents. If a large number clock corrections reach the maximumcorrection parame-
ter, the game clocks will often not be properly synchronized.

Bandwidth usage metrics

Metric 8: The bandwidth usage of GameCast without any gamingactivities.
To obtain this metric, we measure the bandwidth used by the Tribler-G instances
without taking the gaming activities into account. In orderto achieve this, we log
the bandwidth usage of the information dissemination process separately.

Metric 9: The bandwidth usage of GameCast when peers are playing games over
the network.

47

To obtain this metric, the bandwidth that peers use when theyare involved in ga-
ming activities (e.g., sending invites, or making moves) ismeasured.

4.3.2 Scenario generation

In Section 4.2.2 we discussed the notion of the input scenario and what types of
commands they can be built out of. However, until now we have not concerned
ourselves with how exactly we can create an input scenario. In this section we will
elaborate on how to deal with the issue of scenario generation.

In order to create an input scenario, we need to decide which peer is started at
what time and for how long it remains running. To solve this problem, we have
chosen to base our approach on a basic queueing model, in which peers arrive in
the network one by one, according to a Poisson process. Sincethe arrival times are
modelled with a Poisson process, the inter-arrival times will follow an exponential
distribution, for which the cumulative distribution function (CDF) is:

F (x) = 1− e−λx.

Furthermore, we assume that the intervals during which the peers are running, are
uniformly distributed and independent of the inter-arrival times.

An appropriate value forλ in the CDF can be determined by applying Little’s
law. Using the same terminology as earlier, Little’s law states that, given an average
number of online peers (N), the average running time for each peer (t), and an
average peer arrival rate (λ), the following relation holds when the system is in
equilibrium:

N = λt.

We have created a script capable of generating an input scenario based on user-
specified parameters such as the maximum numberGmax of simultaneous games
peers aim to play, and the values of the variablesN , andt. The script works by
running in a continuous loop that does the following. First,it generates a random
numberr in the range(0, 1]. Using the value ofr, the next inter-arrival timex can
be calculated by applying the CDF mentioned earlier. Next, the script generates a
wait command withx specified as its argument. Following that, a start command
is created for a new peer (selected from an infinite source population). Once a
start command has been created for a certain peer, the generator will ensure that
that peer will remain running for a randomly selected numberof seconds within a
certain range. After a peer has stopped, it will not return tothe source population.

We should point out that starting and stopping peers are blocking commands,
meaning that the execution of the input scenario will halt until the commands have
been completed. If left unchecked, this will affect the arrival times of all sub-
sequent peers, resulting in a lower arrival rate. In order toalleviate these effects,
the GameTest system will measure the time spent during the execution of these
blocking commands, and will attempt to correct subsequent wait commands by
subtracting the time that was spent waiting for the blockingcommands to com-
plete.

48

While generating an input scenario for the emulation, we have set the targeted
network size (N) to 400 peers. Additionally, the time that a peer will remain
running is uniform randomly chosen from the range between 10and 40 minutes
(amounting to 25 minutes on average fort).

Figure 4.5 shows the number of online peers within our emulated network as
a function of time. The experiment is performed in real-timeand lasts 8 hours,
during which 7,618 unique non-recurring peers are part of the network, while the
maximum network size is 446 peers. Additionally, the peers on the network play
a total of 7,736 games of chess. Two of the peers in the networkare superpeers,
which remain online for the entire duration of the experiment. Additionally, the
first half hour of the experiment is the start-up time of the emulation. While pre-
senting the results of the emulation in the next section, we will sometimes exclude
this time period from our results, since the network is stillin the process of starting.

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8

N
um

be
r

of
on

lin
e

pe
er

s

Time since emulation start (h)

Emulation
start-up

Figure 4.5: The size of the emulated network as a function of time.

4.3.3 Experimental results

In the previous section we introduced twelve metrics for evaluating our system,
which we categorized as follows: information dissemination metrics, game agree-
ment metrics, game-play metrics, and bandwidth usage metrics. In the following
sections, we will discuss the performance of GameCast in terms of metrics for each
of these categories separately.

49

Information dissemination

In order to asses how well the information dissemination process performs, we
monitor six metrics while running our experiment. First, wehave monitored the
knowledge of online peers about all peers and games that havebeen added to the
network since the start of the emulation (metrics 1A and 1B).The behaviour of
these metrics as a function of time is displayed in Figure 4.6. Both metrics are
much higher during the first half hour of the experiment because then there are
only a few peers leaving the network (recall that peers remain online for about half
an hour on average), ensuring that the average fraction keeps rising. However, af-
ter the first half hour, more and more peers start to leave the network, leading to a
near exponential decay. Note that metric 1B is much lower than metric 1A since
only the owner of a game is involved in its distribution, whereas peer information
is distributed by all peers that are connected to it. At the end of our experiment,
the fraction of known gaming peers has reached 0.04, while the fraction of known
peers has reached 0.01, meaning that every peers knows on average 4% of all peers
(both off-line and online), and 1% of all games. If we continued the experiment,
both metrics would have continued to decrease, because as peers leave the net-
work, the distribution of their peer and game information also stops. Additionally,
new games are continuously being created, leading to a continued decrease in the
metrics. The results of metrics 1A and 1B tell us that information from inactive
peers quickly disappears from the network, which prevents peers from receiving
irrelevant information.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Time since emulation start (h)

Knowledge of peers (metric 1A)
Knowledge of games (metric 1B)

Figure 4.6: The knowledge of peers about the peers and games that were added to
the network since the start of the emulation as a function of time.

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

F
ra

ct
io

n

Time since emulation start (h)

Knowledge of peers (metric 2A)
Knowledge of games (metric 2B)

Figure 4.7: The knowledge of peers about the peers and games that were added to
the network since joining the system as a function of time.

Figure 4.7 shows the knowledge of peers about peers and gamesthat have been
added to the network since joining the system (metrics 2A and2B). The fractions of
knowledge that peers posses are remarkably stable: on average, peers know about
50% of all peers that have connected to network since they joined the system, and
almost 10% of all games that finished since they joined the system.

In order to gain insight into the number of peers that are aware of certain infor-
mation after its insertion into the network, we have monitored the number of peers
that are aware, over short time intervals, of the finished games or active peers du-
ring each interval (metrics 3A and 3B). The results, displayed in Figure 4.8, show

0

100

200

300

400

500

600

0 15 30 45 60

N
um

be
r

of
pe

er
s

aw
ar

e
of

..
.

Time since peer/game creation (min)

...peer information (metric 3A)
...game information (metric 3B)

Figure 4.8: The number of peers that are aware of a certain peer or a certain finished
game since its insertion into the network as a function of thetime.

51

that on average, 5 minutes after a peer arrives in the network, over 100 peers are
aware the existence of the newly arrived peer. It is because of this behaviour, users
will be able to invite other players within the network just moments after starting
Tribler-G. For games, the behaviour is similar, but less pronounced due to that fact
that games are only distributed by their owners. Nonetheless, around 10 minutes
after a game has finished and starts to be distributed, 50 peers are aware of the
game in question. This is more then we initially expected since each peer will only
periodically send the games it owns to a maximum of 10 connected game buddies
and 10 connected random peers (see Section 3.3.2). However,since many peers
join/leave the network over time, the connected game buddies and random peers
also change frequently, leading to a much larger number of peers that are aware of
a certain game. Since peers are only online for a relatively small period of time
(ranging from 10 to 40 minutes), the number of peers that receive certain infor-
mation quickly stops increasing. Note that since games are created after a peer is
already online for some time, it will be distributed for a smaller period of time,
leading to game information converging much faster.

Game agreement

When peers in the network wish to play a game against each other, they must first
agree on the parameters of the game. Inviting a specific peer on the network is
achieved by sending messages in a point-to-point fashion. Inviting a random peer,
however, is achieved by spreading a message within a distance of two hops. How
fast this message is spread and how many peers are reached is very important for
finding a suitable opponent.

Figure 4.9 (left) shows the distribution times of the randompeer invites that were
sent during the experiment after the emulation start-up phase (metric 4). In most

0
2000
4000
6000
8000

10000
12000

0 400 800 1200 1600

F
re

qu
en

cy

Distribution time (ms)

0
500

1000
1500
2000
2500
3000
3500

0 40 80 120 160

F
re

qu
en

cy

Coverage (peers)

Figure 4.9: The frequencies of the distribution times and network coverages for
random peer invites.

52

cases, spreading the invite over a two hop radius is achievedwithin just 500 ms.
Of course, due to the ideal network transmission times of theDAS4, we can expect
that real-world distribution times are higher.

Additionally, Figure 4.9 (right) shows the number of peers that a single random
peer invite was able to reach after the emulation start-up phase (metric 5). The
minimum number of peers that were reached were about 10 peers. On average,
however, the number of peers that were reached was much closer to 90 peers. This
is well below the theoretical limit: each peer maintains a maximum number of
10 connections with game buddies and an additional 10 connections with random
peers. Random peer invites are spread over a two hop distancegiving us a maxi-
mum of 420 peers that can theoretically be reached. However,considering that not
all peers will maintain the maximum number of allowed connections, and the fact
that many of the neighbours of a peer tend to have connectionsbetween each other
(i.e., clustering), this number is considerably lower.

Game-play

Figure 4.10 shows the time it takes to set up a game (metric 6).In most cases,
the game set-up time stays within 100 ms. All measured game set-up times were
below 350 ms.

Because in competitive games the game clock will often determine whether a
player wins or loses, keeping the game clocks of different players synchronized
is of vital importance. We already have a simple mechanism inplace to help us
achieve this (see Section 3.3.4), but we would like to know more about how large
a typical clock correction is. Figure 4.11 shows how much peers need to correct

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300 350

F
re

qu
en

cy

Game set-up time (ms)

Figure 4.10: The frequencies of the game set-up times duringthe GameCast eva-
luation.

53

the clocks of their opponents (metric 7). Much like the game set-up times, the
maximum clock correction stayed within 450 ms on all occasions. Without any
corrections, this would lead to the game clocks differ several tenths/hundreds of
seconds each time a player makes a single move. This would lead to a difference
in game clocks at the end of the game.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400 450 500

F
re

qu
en

cy

Clock correction (ms)

Figure 4.11: The frequencies of the clock corrections needed to synchronize the
game clocks of peers on the emulated network.

Bandwidth usage

In order to test the scalability of the GameCast protocol, wehave measured the
average bandwidth usage of all peers in the network. We have measured the in-
formation dissemination protocol separately, in order to get a more clear picture of
how the bandwidth is used.

Figure 4.12 shows the average bandwidth used during the experiment (metrics 8
and 9). When looking at the bandwidth usage of the GameCast commands (i.e., the
messages related to setting up and playing games), we noticethat on average the
bandwidth usage remains within about 200 bytes/second. Thebandwidth used by
the process of information dissemination, also showed in Figure 4.12, is only about
550 bytes/second for each player on average. Even during theemulation start-up,
the bandwidth usage rises quickly to about the same level.

We should point out the we have measured that bandwidth at theapplication
level, meaning that the lower layers of the TCP/IP model are not taken into account
(e.g. TCP headers, IP headers, etc.). Despite the fact that the actual bandwidth
usage will be higher, we believe that the GameCast protocol is efficient enough for
real world use, were the bandwidth used by GameCast is unlikely to be noticeable
by the user.

54

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8

B
an

dw
id

th
(b

yt
es

/s
)

Time since emulation start (h)

Average GameCast commands bandwidth
Average GameCast gossip bandwidth

Figure 4.12: The average bandwidth usage of peers on the emulated network as a
function of time.

55

56

Chapter 5

User testing

In this chapter we elaborate on the results acquired during our two rounds of user
testing. The goal of user testing is to validate that Tribler-G meets the functional
requirements specified in Section 3.1. In addition, in particular related to the GUI,
we wanted to gain insight into the user experience. User testing was performed in
two rounds. During the first round, we encountered several technical issues with
the software and protocol itself. After fixing these issues,we performed a second
round of user testing, during which the performance of Tribler-G was on par with
existing centralized solutions. Having studied the results of the questionnaire from
the second (and final) round of user testing, we noticed that the participants were
overall positive about Tribler-G in terms of software quality and usability.

In Section 5.1 we specify the process that we used while performing user testing.
In Section 5.2 we provide the results acquired from both rounds of user testing.

5.1 Testing procedure

For each round of the user test, we found a group of 6 six Masterand PhD students
in computer science willing to participate. While both rounds of the user test were
made using 6 volunteers, not all volunteers participated inboth tests. The ages of
our volunteers were between 25 and 35 years. None of the volunteers were involved
in the design or implementation of Tribler-G, and none had prior knowledge of the
system, with the exception of a 20-minute briefing. While we had a lab room with
standard computer equipment at our disposal, volunteers were permitted to use an
alternate location. During user testing, the volunteers did not interact directly.

User testing was done in two iterative rounds, which both lasted around two
hours. The first round was carried out in the early stages of the software develop-
ment process, which gave us time to listen to opinions of the users and adjust the
software accordingly. During the first round, the Tribler-Gsoftware showed per-
formance and time synchronization issues (see Section 5.2.2). The second round
of user testing was carried out several months later, after the software development
was completed.

57

The process for both rounds of user testing was as follows. First, prior to using
the software, the volunteers were briefed about the main features of Tribler-G and
the purpose of the user test. After the briefing, the volunteers were given a question-
naire and a software manual. The manual (see Appendix A) provides an overview
of six main features of Tribler-G (e.g., creating a new game,accepting a challenge
from a fellow user), and lists the tasks that should be performed to use each of them
(e.g., clicking on a button or selecting a certain item from alist). The users were
asked to use this manual while testing the software, and to fill out the questionnaire
(see Appendix B) when testing was completed. During the usertest, an assistant
was present to conduct informal interviews, provide assistance, and monitor the
software.

5.2 Test results

This section describes the results acquired from both rounds of user testing. First,
Section 5.2.1 will provide the results from the questionnaire. Second, Section 5.2.2
will elaborate on some of the software issues that we discovered while monitoring
the behaviour of the software.

5.2.1 Questionnaire

Upon completion of the user test, our volunteers were asked to fill out a question-
naire. The questionnaire starts with ten multiple-choice questions, followed by four
non-multiple-choice questions. The first seven questions of the questionnaire are
used to verify if the users are satisfied with the implementation of the functional
requirements listed in Section 3.1. The remainder of the questionnaire is meant to
gain insight into the user experience.

The results of the multiple-choice component of the questionnaire for rounds one
and two are shown in Tables 5.1 and 5.2, respectively. Since the software has not
significantly changed between rounds one and two feature-wise, we will discuss
the results of the multiple-choice questions from both rounds in one go. The full
questionnaire is included in this thesis as Appendix B. For the multiple-choice
questions, users are asked to give their opinion about various statements regarding
Tribler-G using a 5-point Likert scale, where the negative answers are presented
first.

Considering the results from the first seven multiple-choice questions, we can
state that our volunteers are generally positive in regardsto the implementation
of our software. However, they do seem more satisfied with theimplementation
of Tribler-G’s core functionalities (e.g., accepting challenges, sending challenges),
and less satisfied with the other functionalities (e.g., discussing games, importing
games from other players). This comes as no surprise since wedevoted a significant
portion of our development efforts to ensuring that the verycore functionalities
are working perfectly. Furthermore, the answers to the remaining three multiple-

58

choice questions suggest that our participants were satisfied with the Tribler-G user
interface and its ease of use, but there still is room for improvement.

Statement No. of responses
++ + +/- - –

Creating a new game works as I expected. 1 4 0 1 0
Accepting challenges from other users works without
troubles.

1 3 1 1 0

Having the ability to import games from the Free Internet
Chess Server (FICS) is usefull.

3 2 1 0 0

Having the ability to play a game against the computer is
useful.

1 4 1 0 0

Importing game information from fellow users on the net-
work works well.

1 3 2 0 0

The player statistics give a clear idea of what the ratings of
fellow users are.

0 3 2 1 0

The ability to attach comments to games played by fellow
users works well.

1 2 3 0 0

Tribler-G is easy to use. 0 3 1 2 0
The user interface is designed well. 0 3 2 1 0
I am good at playing chess. 0 0 1 4 1

Table 5.1: The opinions of the participants of round one about various statements
regarding Tribler-G (++ represents strong agreement, – represents strong disagree-
ment).

Statement No. of responses
++ + +/- - –

Creating a new game works as I expected. 1 4 0 1 0
Accepting challenges from other users works without
troubles.

1 5 0 0 0

Having the ability to import games from the Free Internet
Chess Server (FICS) is usefull.

3 1 2 0 0

Having the ability to play a game against the computer is
useful.

3 2 0 1 0

Importing game information from fellow users on the net-
work works well.

2 1 3 0 0

The player statistics give a clear idea of what the ratings of
fellow users are.

2 2 2 0 0

The ability to attach comments to games played by fellow
users works well.

0 3 2 1 0

Tribler-G is easy to use. 0 5 1 0 0
The user interface is designed well. 1 2 3 0 0
I am good at playing chess. 0 0 3 3 0

Table 5.2: The opinions of the participants of round two about various statements
regarding Tribler-G.

59

Next, we will provide the results from the non-multiple-choice questions. We
will not discuss the answers that each participant gave individually, but give an
impression of what the overall consensus is.

Question 1: What are the positive features of Tribler-G?
Round one:Participants generally found the user interface to be good-looking,
responsive, and easy to work with. Additionally, two of the participants were par-
ticularly fond of the statistics information that Tribler-G provided.
Round two:Again, almost all participants were happy with aesthetics of the user
interface, and found it easy to work with. Some users, especially those who also
participated in round one of the user test, noted that the software was stable and
performed well.

Question 2: What are the negative features of Tribler-G?
Round one:Three out of six participants noticed a high delay while undertaking
certain actions, such as responding to an invitation and making a move (see also
Section 5.2.2). Additionally, two of the participants suggested that the user inter-
face should provide more feedback. Therefore, after the first round of user testing,
additional status information and pop-up notifications were added to the software.
Round two: One of the participants pointed out that Tribler-G currently aborts
a game, when one of the players fails to make a move within the allotted time,
but prefers that this player loses the game instead. We plan to make this change
in software behaviour in the next version. Another participant suggested that the
messages posted using Tribler-G’s discussion feature should be listed in the same
order for all users.

Question 3: How would you improve Tribler-G?
Round one:Besides fixing responsiveness problems that occurred when partici-
pants issued commands through the user interface (see Section 5.2.2), most of the
participants found that the user interface could be more informative and sugges-
ted using pop-ups. Additionally, users suggested that we work on expending the
Tribler-G user-base, which would make it easier to find opponents on the peer-to-
peer network.
Round two:Two participants suggested including a chat feature while agame is
being played. Another, suggested that inviting a specific gamer on the network
should be done using the gamer’s user-name rather then the PermID. Also, most
participants would like to see more available games, and a user interface that shows
more clearly the status of current games and available invites. Finally, two out of
the six user suggested that the chessboard should display immediately after the
game has started.

Question 4: Would you use Tribler-G again? If not, please explain why.
Round one:Two out of the six participants said that they would use Tribler-G is
there were more users on the network. One participant said that he would use

60

Tribler-G again, if certain actions did not have such high delays. The remaining
participant suggested incrementing the number of games, since they did not like to
play chess.
Round two:Two out of the six user said that they would like to use Tribler-G in the
future. All four remaining users, said that they did not likechess, but they would
consider using the software if there were other game available as well.

Overall, our participants were happy with Tribler-G in terms of software quality
and usability. However, there are still many areas in which our software can be
improved (see also Section 6.2 for a list of future work). Considering the answers
to the question about using the software again, is it important to extend the array
of available games in the future.

5.2.2 Software issues

When we did our first round of user testing, we noticed two major issues: the game
clocks were often not properly synchronized during a game, and Tribler-G suffered
from a lack of responsiveness when using functions such as making a game move
or accepting an invitation from another player.

Clock synchronization

The clock synchronization issue was caused by the difference between the time at
which a player makes a move and the moment the other player(s)receive a move
(i.e., latency). We have addressed the problem by introducing a clock synchroniza-
tion mechanism that ensures that when a player makes a move, the time taken for
the move in question is also included. The subject of game clocks is discussed at
greater length in Section 3.3.4.

Software responsiveness

Concerning the issue of lack of responsiveness, we found that running the Bud-
dyCast protocol in the background resulted in significant delays in the application
code. We did not notice the severity of these issues until theuser testing because,
during the development of GameCast, BuddyCast was deactivated for most of the
time. Disabling BuddyCast enabled us to start and test Tribler-G instances more
quickly on our development computer. This section will further discuss this res-
ponsiveness problem and its solution.

Before we go any further, it is useful to explain how Tribler uses various threads
of execution while passing messages over the secure overlay. As we already men-
tioned in the introductory chapter, Tribler’s secure overlay enables high-level com-
munication between peers. Tribler protocols, such as BuddyCast, ChannelCast,
and of course GameCast, use the secure overlay to send their messages. When Tri-
bler sends or receives a message over the secure overlay, it uses multiple threads of
execution to complete the operation. There are two threads relevant to the passing

61

of messages over the secure overlay. First, Tribler has a separate thread, called
the network thread, that handles all network related tasks, such as receiving and
sending messages. Second, Tribler has another thread, called theoverlay thread, to
execute the protocols that run on the secure overlay. The network thread and over-
lay thread are in constant contact with each other. For instance, when a BuddyCast
message arrives, the network threads reads the message fromthe network socket,
and passes the message to the overlay thread, which processes the message further.
Similarly, when Tribler decides to send a BuddyCast message, the overlay thread
will create the message and subsequently pass it to the network thread, which will
ensure that the message is written to the network socket. Activities such as writing
to a database or file also frequently occur on the overlay thread. The overlay thread
is implemented as a simple queue of tasks which get executed one at a time. Other
threads schedule these tasks and the overlay thread executes these tasks in FIFO
order.

As we suspected that the responsiveness issues are related to activities that mostly
utilize the overlay thread, we measured the delays of the tasks executed by the over-
lay thread. We found that the overlay thread was severely overloaded, to the point
that the application was becoming non-responsive. Figure 5.1 shows that delays of
the tasks that were executed within the first 60 minutes afterstart-up. In the most
severe case, a task was delayed for 4.5 minutes. Clearly, if auser needs to wait over
4 minutes to send a message, that user will mostly be displeased with our software.
However, when running Tribler-G with BuddyCast disabled, the delays of the tasks
stay below 3 seconds. We also measured the delay of tasks withGameCast disa-
bled (and BuddyCast enabled) and still noticed very high delays. Since BuddyCast
does not require the timely sending or receiving of messages, these delays have
never been reported as a problem by users, in the past.

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

D
el

ay
(s

)

Time (s)

Task delay with BuddyCast and GameCast
Task delay with only BuddyCast
Task delay with only GameCast

Figure 5.1: Delays of scheduled tasks on the overlay thread while running Tribler-
G based on Tribler 5.2.1.

Since the problem seems to be caused by Tribler-G componentsother than Ga-

62

meCast, and the Tribler version that we used as a basis for Tribler-G was almost
a year old, we decided that moving to a recent version was appropriate. Much to
our surprise, the delay problems of the overlay thread seemed to have disappeared
completely. When running Tribler-G based on Tribler 5.3.8,the delays of tasks
peak stayed below 4.5 seconds, on all occasions (see Figure 5.2). Note that the ac-
tual delays will likely be lower, since taking these measurements require additional
debugging code to be executed. After looking further into this matter, we found
that the ChannelCast protocol used in Tribler 5.2.1 used very inefficient means to
access the database. This issue has been fixed in more recent versions, significantly
reducing the load on the overlay thread and therefore also the delays of the tasks.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500

D
el

ay
(s

)

Time (s)

Task delay with BuddyCast and GameCast
Task delay with only BuddyCast
Task delay with only GameCast

Figure 5.2: Delays of scheduled tasks on the overlay thread while running Tribler-
G based on Tribler 5.3.8.

To further suppress task delays, we have also created a separate GameCast
thread. The GameCast thread is only used for tasks on which the user is waiting
(i.e., high-priority tasks), for instance, making a move orreplying to an invitation.
Tasks of which the user is unaware (i.e., low priority tasks), such as sending mes-
sages related to the information dissemination process, are scheduled normally on
the overlay thread.

In conclusion, the major problems of Tribler-G have been resolved, as indicated
by the responses of our test users, after round two of testing.

63

64

Chapter 6

Conclusion

In Section 6.1 we give a summary of our work and provide our conclusions. Next,
in Section 6.2, we propose future work that would further improve our current
system.

6.1 Summary and conclusions

In this thesis we have presented a decentralized system thatallows users to play
turn-based board games over a peer-to-peer network. Our current implementation,
called Tribler-G, is build as an extension to the Tribler file-sharing application, and
focuses on enabling users to play online chess. Tribler-G supports all main gaming
features that traditionally only exist on systems with a central authority, such as
the Free Internet Chess Server (FICS), and realizes them in adecentralized setting.
The result is a scalable and easy to use application that offers online chess players
an attractive alternative to the current centralized services, which typically generate
revenue using advertisements and subscription fees.

In order to solve the problem of playing chess over a peer-to-peer network, we
have designed and implemented GameCast, a protocol which allow players to ex-
plicitly invite one another or invite any player within a certain rating. Additionally,
besides the functionalities required for playing a game, GameCast will ensure that
finished games are distributed throughout the network. Players receiving the game
will be able to review the game and attach comments. Despite the fact that Tribler-
G currently only implements online chess, GameCast has beendesigned to support
a variety of turn-based board games, including games that require more than two
players.

To realize the GameCast protocol, we use an epidemic mechanism to allow peer
discovery and game distribution within the network. Additionally, we have have
based the GameCast command syntax on a protocol commonly used by online
chess servers, known as the ICS protocol. Furthermore, the mechanisms used for
player invitation and for playing a game are based on the ideathat for each game, its
creator/owner is responsible for administrative tasks such as notifying all players

65

that the game has started, distributing game information and ensuring that com-
ments are distributed.

In order to evaluate the performance of the GameCast protocol, we have created
GameTest, a system capable of emulating a peer-to-peer network by starting or
stopping a Tribler-G instance for each joining or leaving peer. Using GameTest,
we conducted a large-scale emulation on the DAS-4 distributed supercomputer.
Additionally, using small groups of six people, we performed two initial rounds of
user testing. Based on the results acquired during the emulation as well the user
testing, we can draw the following conclusions:

GameCast is effective.Based on the observations made during the emulation, an
opponent on the network can typically be found in a matter of seconds. When
sending random peer invites, the invites often reached about 75 peers, which
is sufficient to find a suitable opponent. When an opponent is found and
a game is being played, our clock synchronization mechanismconsistently
ensured that the game clocks of the players remain synchronized. Further
strengthened by the positive outcome of the user testing, weconclude that
the GameCast protocol is an effective means to providing simple gaming
functionalities over a peer-to-peer network.

GameCast is scalable.Excluding overhead caused by TCP/IP message headers,
GameCast uses only 750 bytes/second on average for a peer that is actively
playing chess. Of this average bandwidth, about 550 bytes/second can be at-
tributed to gossiping messages. Since each peer sends its gossiping messages
at a constant rate, an increase in the network size of the peer-to-peer network
will not result in an increased bandwidth usage for each individual peer. Fur-
thermore, the bandwidth caused by the execution of GameCastcommands
is limited by the number of actions a chess player can make within a certain
time period. However, the bandwidth may increase in a less interconnected
network, due to the spreading of invites across a two-hop radius. However,
since the number of simultaneous connections that a peer canmaintain with
other peers is bounded, the number of peers that a single invite can reach
also has an upper bound.

6.2 Future work

While Tribler-G is a considerable step towards creating an online distributed so-
cial network on which users can play board games, there are still quite a few areas
in which Tribler-G can be improved. We have categorized these improvements
into two main groups: improvements that fix existing technical issues, and im-
provements that somehow extend the system. For the first group, we feel that the
following are among the most important:

Improving the synchronization mechanism When playing a game, each player
keeps track of how much time each of the players has used so far. However,

66

the time that passes between the moment at which a player makes a move and
the moment the other player(s) receive a move, will result inan offset bet-
ween the clocks of the players. The FICS deals with these network latency
issues by introducing Timeseal, an application that runs onthe player’s ma-
chine and notifies the FICS of the time that the player has taken to make a
move. The GameCast time synchronization mechanism closelyresembles
Timeseal, in that both mechanisms measure that time a move has taken from
the player’s perspective. Unfortunately, since a player ison a trusted entity,
this mechanism also introduces a vulnerability which is likely to be exploited
by malicious users. Therefore, we would like to alter our current mechanism
so that it would be more tamper proof.

Improving GameCast security An issue with GameCast, and peer-to-peer net-
works in general, is what happens when one or more malicious peers are
introduced into the network. For instance, malicious peerscould start dis-
tributing fake game information in order to affect the rating of a player (i.e,
Sybil attacks).

Dealing with NAT firewalls Many computers connected to the internet today are
behind NAT firewalls. NAT creates a private IP address realm separate from
the Internet, which often results in difficulties acceptingincoming connec-
tions from external hosts. This results in a number of issueswhen unconnec-
table peers are using GameCast. For instance, a peer behind aNAT firewall
receives a random peer invite from game buddy, but is unable to respond
because that peer is behind a NAT firewall and cannot accept a connection.
A possible way of increasing the usability for users that cannot accept in-
coming connections, could be to increase the role of the super-peers (e.g.,
messages between peers could be passed trough a connectablesuperpeer).

Further research into protocol parameters Further research is required in order
to determine what the effects of different GameCast parameters are. For
instance, peers involved in information distribution are currently only allo-
wed to send/receive messages every 5 minutes. How would changing this
parameter affect the bandwidth usage?

Concerning the second group of improvements, which would extend Tribler-G,
we feel that the following are among the most important:

Extending the number of available gamesMany people do not know how to play
chess or simply do not like it. Therefore, we would like to extend the number
of available games to include, for instance, Scrabble, Monopoly, Checkers,
and Go.

Support for random number agreement We would like to include a mechanism
that allows peers to agree on a random number, which would help gene-
rate random content for games that require this. Think for instance of board
games such as Scrabble and Rummikub, or card games such as Texas Hol-
dem Poker.

67

Penalize leaving the game before it is overCurrently, when a game expires (i.e.,
one of the players fails to move in time) it is discarded. Thiseffectively
means that a player who is loosing a game can simply stop playing in order
to prevent a negative impact on his/her rating. Therefore, in future versions
of Tribler-G, the player that fails to move in time should be considered the
loser of the game.

Extending the number of GameCast featuresCurrently GameCast supports the
most basic functionalities in order to allow players to playgames against
each other. However, there are also a number of additional functionalities
that we feel would improve the gaming experience. These functionalities
include allowing users to observe a game in progress, allowing opponents to
chat while playing a game, support for unrated games (i.e., games of which
the outcome does not affect the ratings of the players), allowing players to
suspend/resume games, support for game tournaments, support for anti-spam
functionalities for the discussion board, allowing for themessages in the
discussion board to be nested and ordered, offering chess instruction videos
through the Tribler download feature, and introducing somekind of trust
rating for players.

Unique user namesLike the standard Tribler application, Tribler-G identifies peers
on the network using quasi-unique permanent identifiers. While these iden-
tifiers can be considered unique, the user names are not. Therefore, it stands
to reason that at some point the user will be confronted with multiple players
on the network using the same user name. This can make identifying a cer-
tain player difficult. Therefore, we would like future Tribler-G releases to
support unique user names, if possible.

68

Bibliography

[1] Call of duty modern warfare 3.http://www.callofduty.com/mw3.
[2] Chess on facebook.http://apps.facebook.com/chessfb.
[3] Das-4: Distributed asci supercomputer 4.http://www.cs.vu.nl/das4.
[4] Diaspora.https://joindiaspora.com.
[5] Free internet chess server.http://www.freechess.org.
[6] Gnu chess.http://www.gnu.org/software/chess.
[7] Gnu social.http://www.gnu.org/software/social.
[8] Gnutella.http://www.gnutella.com.
[9] Internet chess club.http://www.chessclub.com.

[10] Kgs go server.http://www.gokgs.com.
[11] Noserub.http://noserub.com.
[12] Yahoo! chess.http://games.yahoo.com/ch.
[13] 20 Million Unique Players Log Into Call Of Duty Every Month. http://www.

xboxdailynews.com/2011/09/05/20-million-unique-players-
log-into-call-of-duty-every-month, 2011.

[14] Social Gaming on Track to Become 5 Billion Industry by 2015. http://
www.parksassociates.com/blog/article/parks-pr2011-
socialgaming, 2011.

[15] Haakon Bertheussen. Wordfeud.http://www.wordfeud.com.
[16] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda, Jeffrey

Pang, Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: enabling large-scale,
high-speed, peer-to-peer games. InSIGCOMM, pages 389–400, 2008.

[17] Blizzard Inc. World of Warcraft subscriber base reaches 11.5 mil-
lion worldwide. http://us.blizzard.com/en-us/company/press/
pressreleases.html?081121, 2008.

[18] Blizzard Inc. World of Warcraft.http://us.battle.net/wow/en/, 2011.
[19] Egbert Bouman. A survey of developments in online social networks. Technical

report, Delft University of Technology, 2010.
[20] Danah M Boyd and Nicole B Ellison. Social network sites:Definition, history, and

scholarship.Journal of Computer-Mediated Communication, 13(1):210–230, 2008.
[21] Pete Cashmore. FarmVille Surpasses 80 Million Users.http://mashable.

com/2010/02/20/farmville-80-million-users, 2010.
[22] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: a

distributed anonymous information storage and retrieval system. InInternational
workshop on Designing privacy enhancing technologies: design issues in anonymity
and unobservability, pages 46–66, 2001.

[23] B. Cohen. Incentives Build Robustness in BitTorrent. In Workshop on Economics of
Peer-to-Peer Systems, May 2003.

69

http://www.callofduty.com/mw3
http://apps.facebook.com/chessfb
http://www.cs.vu.nl/das4
https://joindiaspora.com
http://www.freechess.org
http://www.gnu.org/software/chess
http://www.gnu.org/software/social
http://www.gnutella.com
http://www.chessclub.com
http://www.gokgs.com
http://noserub.com
http://games.yahoo.com/ch
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.xboxdailynews.com/2011/09/05/20-million-unique-players-log-into-call-of-duty-every-month
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.parksassociates.com/blog/article/parks-pr2011-socialgaming
http://www.wordfeud.com
http://us.blizzard.com/en-us/company/press/pressreleases.html?081121
http://us.blizzard.com/en-us/company/press/pressreleases.html?081121
http://us.battle.net/wow/en/
http://mashable.com/2010/02/20/farmville-80-million-users
http://mashable.com/2010/02/20/farmville-80-million-users

[24] Carlton R. Davis, Stephen Neville, José M. Fernandez,Jean-Marc Robert, and John
Mchugh. Structured peer-to-peer overlay networks: Ideal botnets command and
control infrastructures? InProceedings of the 13th European Symposium on Re-
search in Computer Security: Computer Security, ESORICS ’08, pages 461–480,
2008.

[25] Mark E. Glickman. Parameter estimation in large dynamic paired comparison expe-
riments.Applied Statistics, 48:377–394, 1999.

[26] Thorsten Hampel, Thomas Bopp, and Robert Hinn. A peer-to-peer architecture for
massive multiplayer online games. InNetGames, pages 48–52, 2006.

[27] Betjeman House. Technical report : An estimate of infringing use of the internet.
Analysis, (January):1–56, 2011.

[28] Robert M. Hyatt. Crafty.http://www.craftychess.com, 1994.
[29] Bonnie E. John and David E. Kieras. The goms family of user interface analysis

techniques: comparison and contrast.ACM Trans. Comput.-Hum. Interact., 3:320–
351, December 1996.

[30] Nick O’Neill. 66 percent of facebook traffic is to games.http://www.
socialtimes.com/2010/04/66-percent-of-facebook-traffic-
is-to-games, April 2010.

[31] OpenTTD team. OpenTTD, 2010.http://www.openttd.org.
[32] J.A. Pouwelse, J. Yang, M. Meulpolder, D.H.J. Epema, and H.J. Sips. Buddycast: an

operational peer-to-peer epidemic protocol stack. InProc. of the 14th Annual Conf.
of the Advanced School for Computing and Imaging, pages 200–205, 2008.

[33] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,A. Iosup, D. H. J. Epema,
M. Reinders, M. R. van Steen, and H. J. Sips. Tribler: a social-based peer-to-peer
system: Research articles.Concurr. Comput. : Pract. Exper., 20:127–138, February
2008.

[34] Jelle Roozenburg. Secure decentralized swarm discovery in tribler. Master’s thesis,
Delft University of Technology, 2006.

[35] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakri-
shnan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’01, pages 149–160, 2001.

[36] David Kieras University and David Kieras. Using the keystroke-level model to esti-
mate execution times, 1993.

[37] M. Varvello, C. Diot, and E. W. Biersack. P2P Second Life: Experimental Validation
Using Kad. InINFOCOM, pages 1161–1169, Apr. 2009.

[38] Anthony Peiqun Yu and Son T Vuong. MOPAR : A Mobile Peer-to-Peer Overlay
Architecture for Interest Management of Massively Multiplayer Online Games. In
NetGames, pages 99–104, 2005.

70

http://www.craftychess.com
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.socialtimes.com/2010/04/66-percent-of-facebook-traffic-is-to-games
http://www.openttd.org

Appendix A

Guided examples of using
Tribler-G

This is a getting started guide for Tribler-G, and was used during user testing (see
Chapter 5).

Example 1: Installing and configuring Tribler-G
Before using Tribler-G for the first time, you need to installit to your machine.
Additionally, after Tribler-G is installed, you will need to set a number of settings
in order to use the software properly. The entire process should only take a few
minutes.

1. First, go to the Tribler-G website:http://tribler-g.org.

2. If you are using a Windows PC, download and execute the Windows installer
and follow the instructions. When entering the installation path, be sure to
enter a location that you have write access to. After the installation is com-
plete, launch Tribler-G from the Windows start menu (its listed as ’Tribler’).

If you are using a Linux PC, download the Tribler-G archive for Linux and
open it by double-clicking the file. After opening the archive, extract the
folder ’Tribler-G-linux’ to a location you have write access to (e.g., your
home folder). Next, open the folder you just extracted in thefile manager,
and double-click on the file ’run.sh’. At this point, you willbe presented
with a message box asking you what action to take. Click on ’run’, after
which the Tribler-G application should execute.

3. Now that you have started Tribler-G, select the ’Settings’ button from the top
bar of the screen. You will now see a window, which, among other things,
allows you the set-up a profile and a port number.

4. Next, you need to set-up a nickname, so that fellow users onthe network are
able to recognize you. Make sure that the ’General’ item is selected in the

71

http://tribler-g.org

listing on the left side of the settings window. You should now be presented
with a form which allows you to set your nickname. Next, fill ina nickname
of your choosing.

5. We need to make sure that external peers are able to connectto Tribler-
G by setting up the correct port number. To do this, make sure that the
’Connection’ item is selected in the listing on the left sideof the settings
window. Ensure that the port number is set to a port that is accessible from
the internet, and click the ’Save’ button.

6. Restart the application. Tribler-G is now ready to use.

Example 2: Accepting peer-to-peer challenges
Before you can play a game, you need to find a suitable opponenton the network.
This is done by either accepting a challenge from another player, or by creating
a challenge yourself. In this example we will accept an existing challenge from
another player.

1. The top bar of the Triler-G user interface allows you to go through the dif-
ferent panels within Tribler. This bar is included in any standard Tribler
installation, and the Tribler-G merely adds an additional ’Games’ button to
the bar. Please click the ’Games’ button. After doing so, thegaming user
interface is displayed, which encompasses the bottom two panels displayed
in Figure A.1. The left panel presents an overview of the currently imple-
mented games (to date, the only game available is chess). Theright panel
allows you to play the game that is selected in the left panel.

Figure A.1: Viewing player statistics.

72

2. Please click on the ’Find Opponents’ tab. This will bring you to a screen that
shows all challenges that you are eligible to accept (see Figure A.2). At any
time there can be different challenges available.

Figure A.2: Viewing outstanding challenges.

Tribler-G differentiates between a number of different types of challenges.
First, challenges issued by chess players on the peer-to-peer network. Se-
cond, challenges issued by automated chess players, which we call chess-
bots. Chessbots allow you to play a game of chess on the peer-to-peer net-
work in case that no human players are available (these players can be re-
cognized by their name, which starts with ’chessbot’). Finally, challenges
issued by chess players on the FICS network. These challenges are only
shown when the option ’Import unrated challenges from FICS’is enabled.

Challenges have several parameters. The ’opponent’ and ’rating’ parameters
state your opponent’s name and rating. The ’I play as’ parameter states the
colour that you will be playing with if you accept the challenge. Next, para-
meter ’time / inc’ denotes the timing settings for the chess clock. The ’time’
value denotes the start time in minutes to which the clock of each player gets
set, and the ’inc’ value refers to the time in seconds with which the clock of
a player is incremented when a move is made.

3. We will start with playing a game of chess over the peer-to-peer network
by accepting a challenge. If available, pick a challenge issued by a human
player on the peer-to-peer network (i.e., an opponent who’sname does not
start with ’chessbot’), otherwise pick a chessbot challenge. Double-click
on the challenge that you picked. This will cause Tribler-G to contact the
challenger. If the challenger accepts your response, the challenge will disap-
pear from the list and reappear on list of current games that you are playing,
which can be found on the ’Online Chess’ tab (see Figure A.3).

73

Figure A.3: Viewing active games.

4. At this point you should have a single game entry listed on the ’Online
Chess’ tab. Double-click on the game entry in order to go to the chessboard
screen. You should now be presented with a screen similar to the one shown
in Figure A.4. The screen shows the game information: opponent name,
your clock/opponent’s clock, the colour you play with, and which colour is
next to move. Below that, you’ll find the game record, which displays all
the game moves that have been made. Also, the button ’Back to overview’
will take you back to the previous screen, and the little button next to it will
allow you to issue an abort, draw, or resign request. For the abort and draw
request the other player will need to agree for the request tobe executed.

5. Now for the actual playing of a game. When it is your turn to move, you
can click one of your chess pieces, and all the valid moves that you can take
using this piece will be marked on the board. If you are unfamiliar with the
rules of chess, you could take a look at http://www.chess.com/learn-how-to-
play-chess.html.

6. Finish your game of chess. Once you have finished, the outcome of the game
will be determined. Unless the game has ended due to a time-out or an abort
by agreement, the game will now be displayed in the ’Discuss games’ tab,
which we will discuss later.

Example 3: Accepting FICS challenges
Since there does not yet exist a community of users that frequently play chess on
the Tribler network, it is entirely possible that you will find yourself unable to find a
suitable opponent on the game network. To prevent you from being unable to play
a game, Tribler-G is able to import additional invites from the Free Internet Chess

74

Figure A.4: Playing a game of chess against an online opponent.

Server or FICS. Playing these games will not affect your rating. In this example
we will accept a challenge from a FICS user.

1. Go to the challenge list on the ’Find Opponents’ tab.

2. Check the ’Import unrated challenges from FICS’ option. After waiting for
several seconds while Tribler-G is querying the FICS server, you will find
additional challenges in this list. These challenges can berecognized by the
absence of an expiration time.

3. Accept a challenge from a FICS user by double-clicking it.If nothings hap-
pens, it will be because the challenge was already taken by another user. In
this case try double-clicking a different FICS challenge.

4. The game itself works exactly the same as with games playedover the peer-
to-peer network, except that you can only play one FICS game at a time.
Once you have finished the game, it will no longer be displayedin the list
of current games. Also, games that has been played on FICS will not be
displayed in the ’Discuss games’ tab, and the game will be removed after is
has been played.

Example 4: Creating a new game
Next, we are going to create a new game. A new game should normally be created
when you can not find any acceptable challenges, or when you wish to invite a
specific player.

1. In order to create a new game, you will need to go to the challenge list on
the ’Find Opponents’ tab.

75

2. Click on the ’Or, create a new game’ button. This will result in the screen
shown in Figure A.5.

3. As the creator of the game, you can specify several parameters. First, the
type of opponent that you want to play. You can choose to play agame
against a random opponent of a certain rating, or play a game against a spe-
cific user, which should be identified using his/her permid (i.e., the string that
Tribler-G uses to identify the peers on the network). Next, you can choose
which colour you want the play with. Finally, we need to choose the timing
parameters for the chess clock. The chess clock takes two parameters, na-
mely the start time in minutes to which the clock of each player gets set, and
the time in seconds with which the clock of a player is incremented when a
move is made. Set the opponent to ’random’, set the other parameters to wha-
tever you prefer, and click ’Create new game’. At this point Tribler-G will
attempt to spread a challenge throughout the peer-to-peer network. If you
receive an error message stating that there are not enough players connected,
please try again after a few minutes.

4. If the game was created successfully, there will now be a new entry in the
list of your currently outstanding challenges. Once another user accepts your
challenge, the entry will disappear and will re-appear in the list of current
games on the ’Chess Online’ tab. At this point you may have to help a
fellow user out by accepting his/her challenge, because otherwise none of
the challenges will get excepted.

5. Play the game like you would normally.

Figure A.5: Creating a new game.

76

Example 5: Viewing statistics from fellow users

1. Please click on the ’Player statistics’ tab. You should not be presented with
statistics related to all games that were gathered during the distribution pro-
cess, as well as your own games. The top panel shows you your rating (when
players first join the network, they receive a rating of 1500)and how many
games were won/lost, while the bottom panel shows the same, but of the top
25 chess players within the network.

2. Click on the ’Rating distribution’ button. You will now see a histogram of
the rating distribution of known players in the network. This diagram is
meant to give you a more global picture of ratings of other known users.

Figure A.6: Reviewing a game.

Example 6: Using Tribler-G’s review feature

1. Please click on the ’Discuss games’ tab. At this point you will see a list
of all known games (including games that have been gathered during the
information dissemination process). Since the list can grow rather large,
there is also a search option which allows you to display onlygames related
to a particular player.

2. Double-click a random entry, and you will have access to the review panel
(see Figure A.6). In the review panel you can visually browsethrough all
the moves that have been made during the game using the previous and next
button.

3. Next, click on ’View Messages’, which will bring you to thescreen were all
known messages pertaining to the game in question are listed.

77

4. Now, create a new message by clicking ’New’, at which pointyou can fill in
the message you would like to send. The message can be send by clicking
’Post’. Once you have sent your message, the user that created the game will
first receive the message. After that, the creator will startdistributing the
newly received message in future gossip messages (which maytake some
time).

Figure A.7: Viewing the list of messages related to a game.

This completes the guided examples of using Tribler-G.

78

Appendix B

Tribler-G questionnaire

This questionnaire was used for collecting user experiences during user testing
(see Chapter 5).

1. Creating a new game works as I expected.
2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

2. Accepting challenges from other users works without troubles.
2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

3. Having the ability to play a game against the computer is useful.
2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

79

4. Having the ability to import games from the Free Internet Chess Server
(FICS) is usefull.

2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

5. Importing game information from fellow users on the network works well.

2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

6. The player statistics give a clear idea of what the ratingsof fellow users are.

2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

7. The ability to attach comments to games played by fellow users works well.

2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

8. Tribler-G is easy to use.

2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

80

9. The user interface is designed well.
2 Strongly disagree

2 Disagree

2 Neutral

2 Agree

2 Strongly agree

10. Do you know how to play chess?
2 No

2 Yes, but barely

2 Yes, but I could use some practice

2 Yes, I am quite good at chess

2 Yes, I am a grandmaster

11. What are the positive features of Tribler-G?

12. What are the negative features of Tribler-G?

13. How would you improve Tribler-G?

14. Would you use Tribler-G again? If not, please explain why.

81

	Preface
	Introduction
	Online gaming systems
	Online social network systems
	Peer-to-peer networks
	Epidemic protocols
	Contributions
	Thesis layout

	Background
	Related work
	Centralized gaming systems
	Decentralized gaming systems

	Building blocks
	BuddyCast
	Internet Chess Servers

	Design and implementation of GameCast
	Functional requirements
	Non-functional requirements
	The GameCast protocol
	Design overview
	Information dissemination
	Game agreement
	Game-play

	The Tribler-G graphical user interface

	Evaluation of GameCast
	The DAS-4
	Emulation environment
	Architecture of GameTest
	Input scenario
	Peer behaviour
	Logging features

	GameCast evaluation
	Performance metrics
	Scenario generation
	Experimental results

	User testing
	Testing procedure
	Test results
	Questionnaire
	Software issues

	Conclusion
	Summary and conclusions
	Future work

	Guided examples of using Tribler-G
	Tribler-G questionnaire

